SDNodes and MachineOperands get target flags representing the %hi() and
%lo() assembly annotations that eventually become relocations.
Also define flags to be used by the 64-bit code models.
llvm-svn: 179468
Integer return values are sign or zero extended by the callee, and
structs up to 32 bytes in size can be returned in registers.
The CC_Sparc64 CallingConv definition is shared between
LowerFormalArguments_64 and LowerReturn_64. Function arguments and
return values are passed in the same registers.
The inreg flag is also used for return values. This is required to handle
C functions returning structs containing floats and ints:
struct ifp {
int i;
float f;
};
struct ifp f(void);
LLVM IR:
define inreg { i32, float } @f() {
...
ret { i32, float } %retval
}
The ABI requires that %retval.i is returned in the high bits of %i0
while %retval.f goes in %f1.
Without the inreg return value attribute, %retval.i would go in %i0 and
%retval.f would go in %f3 which is a more efficient way of returning
%multiple values, but it is not ABI compliant for returning C structs.
llvm-svn: 178966
This requires v9 cmov instructions using the %xcc flags instead of the
%icc flags.
Still missing:
- Select floats on %xcc flags.
- Select i64 on %fcc flags.
llvm-svn: 178737
The same compare instruction is used for 32-bit and 64-bit compares. It
sets two different sets of flags: icc and xcc.
This patch adds a conditional branch instruction using the xcc flags for
64-bit compares.
llvm-svn: 178621
This is far from complete, but it is enough to make it possible to write
test cases using i64 arguments.
Missing features:
- Floating point arguments.
- Receiving arguments on the stack.
- Calls.
llvm-svn: 178523
We are going to use the same registers for 32-bit and 64-bit values, but
in two different register classes. The I64Regs register class has a
larger spill size and alignment.
The addition of an i64 register class confuses TableGen's type
inference, so it is necessary to clarify the type of some immediates and
the G0 register.
In 64-bit mode, pointers are i64 and should use the I64Regs register
class. Implement getPointerRegClass() to dynamically provide the pointer
register class depending on the subtarget. Use ptr_rc and iPTR for
memory operands.
Finally, add the i64 type to the IntRegs register class. This register
class is not used to hold i64 values, I64Regs is for that. The type is
required to appease TableGen's type checking in output patterns like this:
def : Pat<(add i64:$a, i64:$b), (ADDrr $a, $b)>;
SPARC v9 uses the same ADDrr instruction for i32 and i64 additions, and
TableGen doesn't know to check the type of register sub-classes.
llvm-svn: 178522
to pass around a struct instead of a large set of individual values. This
cleans up the interface and allows more information to be added to the struct
for future targets without requiring changes to each and every target.
NV_CONTRIB
llvm-svn: 157479
This allows us to keep passing reduced masks to SimplifyDemandedBits, but
know about all the bits if SimplifyDemandedBits fails. This allows instcombine
to simplify cases like the one in the included testcase.
llvm-svn: 154011
the processor keeps a return addresses stack (RAS) which stores the address
and the instruction execution state of the instruction after a function-call
type branch instruction.
Calling a "noreturn" function with normal call instructions (e.g. bl) can
corrupt RAS and causes 100% return misprediction so LLVM should use a
unconditional branch instead. i.e.
mov lr, pc
b _foo
The "mov lr, pc" is issued in order to get proper backtrace.
rdar://8979299
llvm-svn: 151623
const_casts, and it reinforces the design of the Target classes being
immutable.
SelectionDAGISel::IsLegalToFold is now a static member function, because
PIC16 uses it in an unconventional way. There is more room for API
cleanup here.
And PIC16's AsmPrinter no longer uses TargetLowering.
llvm-svn: 101635
Target independent isel should always pass along the "tail call" property. Change
target hook LowerCall's parameter "isTailCall" into a refernce. If the target
decides it's impossible to honor the tail call request, it should set isTailCall
to false to make target independent isel happy.
llvm-svn: 94626
Instead of awkwardly encoding calling-convention information with ISD::CALL,
ISD::FORMAL_ARGUMENTS, ISD::RET, and ISD::ARG_FLAGS nodes, TargetLowering
provides three virtual functions for targets to override:
LowerFormalArguments, LowerCall, and LowerRet, which replace the custom
lowering done on the special nodes. They provide the same information, but
in a more immediately usable format.
This also reworks much of the target-independent tail call logic. The
decision of whether or not to perform a tail call is now cleanly split
between target-independent portions, and the target dependent portion
in IsEligibleForTailCallOptimization.
This also synchronizes all in-tree targets, to help enable future
refactoring and feature work.
llvm-svn: 78142
being more consistent with other backends, this makes the SPARC backend
deal with functions with arguments with illegal types correctly, which
fixes some tests in test/CodeGen/Generic.
llvm-svn: 76375
have the alignment be calculated up front, and have the back-ends obey whatever
alignment is decided upon.
This allows for future work that would allow for precise no-op placement and the
like.
llvm-svn: 74564
and add a TargetLowering hook for it to use to determine when this
is legal (i.e. not in PIC mode, etc.)
This allows instruction selection to emit folded constant offsets
in more cases, such as the included testcase, eliminating the need
for explicit arithmetic instructions.
This eliminates the need for the C++ code in X86ISelDAGToDAG.cpp
that attempted to achieve the same effect, but wasn't as effective.
Also, fix handling of offsets in GlobalAddressSDNodes in several
places, including changing GlobalAddressSDNode's offset from
int to int64_t.
The Mips, Alpha, Sparc, and CellSPU targets appear to be
unaware of GlobalAddress offsets currently, so set the hook to
false on those targets.
llvm-svn: 57748