Commit Graph

4 Commits

Author SHA1 Message Date
River Riddle 85ab413b53 [mlir][PDL] Add support for variadic operands and results in the PDL byte code
Supporting ranges in the byte code requires additional complexity, given that a range can't be easily representable as an opaque void *, as is possible with the existing bytecode value types (Attribute, Type, Value, etc.). To enable representing a range with void *, an auxillary storage is used for the actual range itself, with the pointer being passed around in the normal byte code memory. For type ranges, a TypeRange is stored. For value ranges, a ValueRange is stored. The above problem represents a majority of the complexity involved in this revision, the rest is adapting/adding byte code operations to support the changes made to the PDL interpreter in the parent revision.

After this revision, PDL will have initial end-to-end support for variadic operands/results.

Differential Revision: https://reviews.llvm.org/D95723
2021-03-16 13:20:19 -07:00
River Riddle 02c4c0d5b2 [mlir][pdl] Remove CreateNativeOp in favor of a more general ApplyNativeRewriteOp.
This has a numerous amount of benefits, given the overly clunky nature of CreateNativeOp:
* Users can now call into arbitrary rewrite functions from inside of PDL, allowing for more natural interleaving of PDL/C++ and enabling for more of the pattern to be in PDL.
* Removes the need for an additional set of C++ functions/registry/etc. The new ApplyNativeRewriteOp will use the same PDLRewriteFunction as the existing RewriteOp. This reduces the API surface area exposed to users.

This revision also introduces a new PDLResultList class. This class is used to provide results of native rewrite functions back to PDL. We introduce a new class instead of using a SmallVector to simplify the work necessary for variadics, given that ranges will require some changes to the structure of PDLValue.

Differential Revision: https://reviews.llvm.org/D95720
2021-03-16 13:20:18 -07:00
Kazuaki Ishizaki f88fab5006 [mlir] NFC: fix trivial typos
fix typo under include and lib directories

Reviewed By: antiagainst

Differential Revision: https://reviews.llvm.org/D94220
2021-01-08 02:10:12 +09:00
River Riddle abfd1a8b3b [mlir][PDL] Add support for PDL bytecode and expose PDL support to OwningRewritePatternList
PDL patterns are now supported via a new `PDLPatternModule` class. This class contains a ModuleOp with the pdl::PatternOp operations representing the patterns, as well as a collection of registered C++ functions for native constraints/creations/rewrites/etc. that may be invoked via the pdl patterns. Instances of this class are added to an OwningRewritePatternList in the same fashion as C++ RewritePatterns, i.e. via the `insert` method.

The PDL bytecode is an in-memory representation of the PDL interpreter dialect that can be efficiently interpreted/executed. The representation of the bytecode boils down to a code array(for opcodes/memory locations/etc) and a memory buffer(for storing attributes/operations/values/any other data necessary). The bytecode operations are effectively a 1-1 mapping to the PDLInterp dialect operations, with a few exceptions in cases where the in-memory representation of the bytecode can be more efficient than the MLIR representation. For example, a generic `AreEqual` bytecode op can be used to represent AreEqualOp, CheckAttributeOp, and CheckTypeOp.

The execution of the bytecode is split into two phases: matching and rewriting. When matching, all of the matched patterns are collected to avoid the overhead of re-running parts of the matcher. These matched patterns are then considered alongside the native C++ patterns, which rewrite immediately in-place via `RewritePattern::matchAndRewrite`,  for the given root operation. When a PDL pattern is matched and has the highest benefit, it is passed back to the bytecode to execute its rewriter.

Differential Revision: https://reviews.llvm.org/D89107
2020-12-01 15:05:50 -08:00