The purpose of bolding these is to make them visually distinct from
continuations (supplemental note diagnostics). Therefore, the bolding applies
to all severities _including_ remarks -- it's not in any way an indicator of
priority. Also simplify and comment.
No tests.
llvm-svn: 211447
This Lexer test unconditionally used the i128 integer literal suffix.
This suffix is only available to targets that have 128-bit arithmetic
support.
llvm-svn: 211446
Something went wrong with r211426, it is an older version of this code
and should not have been committed. It was reverted with r211434.
Original commit message:
We didn't properly implement support for the sized integer suffixes.
Suffixes like i16 were essentially ignored instead of mapping them to
the appropriately sized integer type.
This fixes PR20008.
Differential Revision: http://reviews.llvm.org/D4132
llvm-svn: 211441
This reverts commit r211426.
This broke the arm bots. The crash can be reproduced on X86 by running.
./bin/clang -cc1 -fsyntax-only -verify -fms-extensions ~/llvm/clang/test/Lexer/ms-extensions.c -triple arm-linux
llvm-svn: 211434
We didn't properly implement support for the sized integer suffixes.
Suffixes like i16 were essentially ignored instead of mapping them to
the appropriately sized integer type.
This fixes PR20008.
Differential Revision: http://reviews.llvm.org/D4132
llvm-svn: 211426
The version information for Visual Studio is spread over multiple variables.
The newer Windows SDK has started making use of some of the extended versioning
variables that were previously undefined. Enhance our compatibility definitions
for these cases.
_MSC_VER is defined to be the Major * 100 + Minor. _MSC_FULL_VER is defined to
be Major * 10000000 + Minor * 100000 + Build. And _MSC_BUILD is the build
revision of the compiler.
Extend the -fmsc-version option in a compatible manner. If the value is the
previous form of MMmm, then we assume that the build number is 0. Otherwise, a
specific build number may be passed by using the form MMmmbbbbb. Due to
bitwidth limitations of the option, it is currently not possible to define a
revision value.
The version information can be passed as either the decimal encoded value
(_MSC_FULL_VER or _MSC_VER) or as a dot-delimited value.
The change to the TextDiagnostic is to deal with the updated encoding of the
version information.
llvm-svn: 211420
It's more flexible and arguably better layering to set flags to modify
compiling for diagnostics in the CC1 job themselves, rather than
tweaking the driver flags and letting them propagate.
There is one visible change this causes: crash report files will now
get preprocessed names (.i and friends).
llvm-svn: 211411
These tests relied on information that was only available for clang
builds that included asserts. Fix these tests to lift that restriction.
llvm-svn: 211408
This refactors the emission of dynamic_cast and typeid expressions so
that ABI specific knowledge lives in appropriate places. There are
quite a few benefits for having the two implementations share a common
core like sharing logic for optimization opportunities.
While we are at it, clean up the tests.
llvm-svn: 211402
When small arguments (structures < 8 bytes or "float") are passed in a
stack slot in the ppc64 SVR4 ABI, they must reside in the least
significant part of that slot. On BE, this means that an offset needs
to be added to the stack address of the parameter, but on LE, the least
significant part of the slot has the same address as the slot itself.
For the most part, this is handled in the LLVM back-end, where I just
fixed the LE case in commit r211368.
However, there is one piece of the clang front-end that is also aware of
these stack-slot offsets: PPC64_SVR4_ABIInfo::EmitVAArg. This patch
updates that routine to take endianness into account.
llvm-svn: 211370
FIXME: This fails on win32 due to ERROR_FILENAME_EXCED_RANGE if the working directory is too deep.
We should make Win32/Path.inc capable of long pathnames with '\\?\'.
llvm-svn: 211363
and is unrelated to the NEON intrinsics in arm_neon.h. On little
endian machines it works fine, however on big endian machines it
exhibits surprising behaviour:
uint32x2_t x = {42, 64};
return vget_lane_u32(x, 0); // Will return 64.
Because of this, explicitly call out that it is unsupported on big
endian machines.
This patch will emit the following warning in big-endian mode:
test.c:3:15: warning: vector initializers are a GNU extension and are not compatible with NEON intrinsics [-Wgnu]
int32x4_t x = {0, 1, 2, 3};
^
test.c:3:15: note: consider using vld1q_s32() to initialize a vector from memory, or vcombine_s32(vcreate_s32(), vcreate_s32()) to initialize from integer constants
1 warning generated.
llvm-svn: 211362
On PowerPC LE the system uses the /lib64/ld64.so.2 dynamic linker name
instead of /lib64/ld64.so.1 (to indicate the ELFv2 ABI version).
This fixes the clang driver to pass the appropriate -dynamic-linker
setting, and adds some more tests to linux-ld.c.
llvm-svn: 211360
There was already partial support for multi-arch on powerpc64le,
but the MultiarchIncludeDirs setting was missing. This patch
adds the appropriate definition, and also extends the
linux-header-search.cpp test case to verify an Ubuntu 14.04
powerpc64le tree.
llvm-svn: 211359
When adding the implicit compound statement (required for Codegen?), the
end location was previously overridden by the start location, probably
based on the assumptions:
* The location of the compound statement should be the member's location
* The compound statement if present is the last element of a FunctionDecl
This patch changes the location of the compound statement to the
member's end location.
Code review: http://reviews.llvm.org/D4175
llvm-svn: 211344
This reimplements part of r211303 in a bit of a cleaner way. Doing so
allows us to use a proper absolute path when calling addFileMapping
rather than relying on a substring being one, which should fix the
tests on Windows.
llvm-svn: 211338
Successfully loaded module files may be referenced in other
ModuleManagers, so don't invalidate them. Two related things are fixed:
1) I thought the last module in the manager was always the one that
failed, but it isn't. So check explicitly against the list of
vetted modules from ReadASTCore.
2) We now keep the file descriptor of pcm file open, which avoids the
possibility of having two different pcms for the same module loaded when
building in parallel with headers being modified during a build.
<rdar://problem/16835846>
llvm-svn: 211330
a qualified-id type because pointer is object of a forward
class declaration, include this info in a diagnostic note.
// rdar://10751015
llvm-svn: 211324
This adds the -module-dependency-dir to clang -cc1, which specifies a
directory to copy all of a module's dependencies into in a form
suitable to be used as a VFS using -ivfsoverlay with the generated
vfs.yaml.
This is useful for crashdumps that involve modules, so that the module
dependencies will be intact when a crash report script is used to
reproduce a problem on another machine.
We currently encode the absolute path to the dump directory, due to
limitations in the VFS system. Until we can handle relative paths in
the VFS, users of the VFS map may need to run a simple search and
replace in the file.
llvm-svn: 211303
This patch fixes a crash when handling malformed arguments to loop pragmas such
as: "#pragma clang loop vectorize(()". Essentially any argument which is not an
identifier or constant resulted in a crash. This patch also changes a couple of
the error messages which weren't quite correct. New behavior with this patch vs
old behavior:
#pragma clang loop vectorize(1)
OLD: error: missing keyword; expected 'enable' or 'disable'
NEW: error: invalid argument; expected 'enable' or 'disable'
#pragma clang loop vectorize()
OLD: error: expected ')'
NEW: error: missing argument to loop pragma 'vectorize'
#pragma clang loop vectorize_width(bad)
OLD: error: missing value; expected a positive integer value
NEW: error: invalid argument; expected a positive integer value
#pragma clang loop vectorize(bad)
OLD: invalid keyword 'bad'; expected 'enable' or 'disable'
NEW: error: invalid argument; expected 'enable' or 'disable'
http://reviews.llvm.org/D4197
Patch by Mark Heffernan
llvm-svn: 211292
Extend the documentation for "#pragma clang loop" hints to include the unroll
and unroll_count directives.
Patch by Mark Heffernan [http://reviews.llvm.org/D4198]
llvm-svn: 211286
Make it return void and delete the dead code in the parser that handled
the case where it might return false. This has been dead since 2010
when John deleted Action.h.
llvm-svn: 211248
retainable ObjC pointers without requiring a bridge-cast
in the context of pointer comparison as this is in effect
a +0 context. // rdar://16627903
llvm-svn: 211243
CL permits static redeclarations to follow extern declarations. The
storage specifier on the latter declaration has no effect.
This fixes PR20034.
Differential Revision: http://reviews.llvm.org/D4149
llvm-svn: 211238
Relax the tests to allow for differences between release and debug builds. This
should fix the buildbots.
Thanks to Benjamin Kramer and Eric Christo for their invaluable tip that this
was release build specific issue.
llvm-svn: 211227
Add support for _InterlockedCompareExchangePointer, _InterlockExchangePointer,
_InterlockExchange. These are available as a compiler intrinsic on ARM and x86.
These are used directly by the Windows SDK headers without use of the intrin
header.
llvm-svn: 211216
Doing this caused us to mistakenly think we'd seen a particular state before
when we actually hadn't, which resulted in false negatives. Credit to
Rafael Auler for discovering this issue!
llvm-svn: 211209
In the final phase of the merge, I managed to disable a bunch of Clang
tests accidentally. Fortunately none of them seem to have broken in
the interim.
llvm-svn: 211149
When instantiating dllimport variables with dynamic initializers, don't
bail out of Sema::InstantiateVariableInitializer without calling
PopExpressionEvaluationContext().
This was causing a stale object to stay on the ExprEvalContexts stack,
causing subsequent calls to getCurrentMangleNumberContext() to fail,
resulting in incorrect numbering of static locals (and probably other
broken things).
llvm-svn: 211137
That's what I get for hurredly splitting the small change out of a much
bigger change that had moved where checkCorrectionVisibility was being
called.
llvm-svn: 211134
IBOutlet and weak attributes when accessed being
unpredictably set to nil because usage of such properties
are always single threaded and its ivar cannot be set
to nil asynchronously. // rdar://15885642
llvm-svn: 211132
When another clang instance builds a module, it may still be considered
"out of date" for the current instance in a couple of cases*. This
patch prevents us from giving spurious errors when compilers race to
build a module by allowing the module load to fail when the pcm was
built by a different compiler instance.
* Cases where a module can be out of date despite just having been
built:
1) There are different -I paths between invocations that result in
finding a different module map file for some dependent module. This is
not an error, and should never be diagnosed.
<rdar://problem/16843887>
2) There are file system races where the headers making up a module are
touched or moved. Although this can sometimes mean trouble, diagnosing
it only during a build-race is worse than useless and we cannot detect
this in general. It is more robust to just rebuild. This was causing
spurious issues in some setups where only the modtime of headers was
bumped during a build.
<rdar://problem/16157638>
llvm-svn: 211129
The parsing for -Rpass= had been factored into the function
GenerateOptimizationRemarkRegex, but at the time I forgot to remove
the original code that just handled OPT_Rpass_EQ.
llvm-svn: 211122
This reverts commit r211096. Looks like it broke the msvc build:
SemaOpenMP.cpp(140) : error C4519: default template arguments are only allowed on a class template
llvm-svn: 211113
There comes a time in the life of any amateur code generator when dumb string
concatenation just won't cut it any more. For NeonEmitter.cpp, that time has
come.
There were a bunch of magic type codes which meant different things depending on
the context. There were a bunch of special cases that really had no reason to be
there but the whole thing was so creaky that removing them would cause something
weird to fall over. There was a 1000 line switch statement for code generation
involving string concatenation, which actually did lexical scoping to an extent
(!!) with a bunch of semi-repeated cases.
I tried to refactor this three times in three different ways without
success. The only way forward was to rewrite the entire thing. Luckily the
testing coverage on this stuff is absolutely massive, both with regression tests
and the "emperor" random test case generator.
The main change is that previously, in arm_neon.td a bunch of "Operation"s were
defined with special names. NeonEmitter.cpp knew about these Operations and
would emit code based on a huge switch. Actually this doesn't make much sense -
the type information was held as strings, so type checking was impossible. Also
TableGen's DAG type actually suits this sort of code generation very well
(surprising that...)
So now every operation is defined in terms of TableGen DAGs. There are a bunch
of operators to use, including "op" (a generic unary or binary operator), "call"
(to call other intrinsics) and "shuffle" (take a guess...). One of the main
advantages of this apart from making it more obvious what is going on, is that
we have proper type inference. This has two obvious advantages:
1) TableGen can error on bad intrinsic definitions easier, instead of just
generating wrong code.
2) Calls to other intrinsics are typechecked too. So
we no longer need to work out whether the thing we call needs to be the Q-lane
version or the D-lane version - TableGen knows that itself!
Here's an example: before:
case OpAbdl: {
std::string abd = MangleName("vabd", typestr, ClassS) + "(__a, __b)";
if (typestr[0] != 'U') {
// vabd results are always unsigned and must be zero-extended.
std::string utype = "U" + typestr.str();
s += "(" + TypeString(proto[0], typestr) + ")";
abd = "(" + TypeString('d', utype) + ")" + abd;
s += Extend(utype, abd) + ";";
} else {
s += Extend(typestr, abd) + ";";
}
break;
}
after:
def OP_ABDL : Op<(cast "R", (call "vmovl", (cast $p0, "U",
(call "vabd", $p0, $p1))))>;
As an example of what happens if you do something wrong now, here's what happens
if you make $p0 unsigned before the call to "vabd" - that is, $p0 -> (cast "U",
$p0):
arm_neon.td:574:1: error: No compatible intrinsic found - looking up intrinsic 'vabd(uint8x8_t, int8x8_t)'
Available overloads:
- float64x2_t vabdq_v(float64x2_t, float64x2_t)
- float64x1_t vabd_v(float64x1_t, float64x1_t)
- float64_t vabdd_f64(float64_t, float64_t)
- float32_t vabds_f32(float32_t, float32_t)
... snip ...
This makes it seriously easy to work out what you've done wrong in fairly nasty
intrinsics.
As part of this I've massively beefed up the documentation in arm_neon.td too.
Things still to do / on the radar:
- Testcase generation. This was implemented in the previous version and not in
the new one, because
- Autogenerated tests are not being run. The testcase in test/ differs from
the autogenerated version.
- There were a whole slew of special cases in the testcase generation that just
felt (and looked) like hacks.
If someone really feels strongly about this, I can try and reimplement it too.
- Big endian. That's coming soon and should be a very small diff on top of this one.
llvm-svn: 211101
We may not have the mangling for static locals vs. enums completely figured out,
but at least for my simple test cases, enums should not increment the mangling
number.
Differential Revision: http://reviews.llvm.org/D4164
llvm-svn: 211078