Summary:
Add LLVM_FORCE_ENABLE_DUMP cmake option, and use it along with
LLVM_ENABLE_ASSERTIONS to set LLVM_ENABLE_DUMP.
Remove NDEBUG and only use LLVM_ENABLE_DUMP to enable dump methods.
Move definition of LLVM_ENABLE_DUMP from config.h to llvm-config.h so
it'll be picked up by public headers.
Differential Revision: https://reviews.llvm.org/D38406
llvm-svn: 315590
Summary:
When reinserting debug values after register allocation, make sure to
insert debug values after each redefinition of debug value register in
the slot index range. The reason for this is that DwarfDebug will end
the range of a debug variable when the physical reg is defined. For
instructions with e.g. tied operands this result in prematurely ended
debug range.
This resolves pr34545
Patch by Karl-Johan Karlsson and Bjorn Pettersson
Reviewers: rnk, aprantl
Reviewed By: rnk
Subscribers: bjope, llvm-commits
Differential Revision: https://reviews.llvm.org/D38229
llvm-svn: 314974
Summary:
This should fix a regression introduced by r313786, which switched from
MachineInstr::isIndirectDebugValue() to checking if operand 1 is an
immediate. I didn't have a test case for it until now.
A single UserValue, which approximates a user variable, may have many
DBG_VALUE instructions that disagree about whether the variable is in
memory or in a virtual register. This will become much more common once
we have llvm.dbg.addr, but you can construct such a test case manually
today with llvm.dbg.value.
Before this change, we would get two UserValues: one for direct and one
for indirect DBG_VALUE instructions describing the same variable. If we
build separate interval maps for direct and indirect locations, we will
end up accidentally coalescing identical DBG_VALUE intervals that need
to remain separate because they are broken up by intervals of the
opposite direct-ness.
Reviewers: aprantl
Subscribers: llvm-commits, hiraditya
Differential Revision: https://reviews.llvm.org/D37932
llvm-svn: 314819
Summary:
A DBG_VALUE that is referring to a physical register is
valid up until the next def of the register, or the end
of the basic block that it belongs to.
LiveDebugVariables is computing live intervals (slot index
ranges) for DBG_VALUE instructions, before regalloc, in order
to be able to re-insert DBG_VALUE instructions again after
regalloc. When the DBG_VALUE is mapping a variable to a
physical register we do not need to compute the range. We
should simply re-insert the DBG_VALUE at the start position.
The problem that was found, resulting in this patch, was a
situation when the DBG_VALUE was the last real use of the
physical register. The computeIntervals/extendDef methods
extended the range to cover the whole basic block, even though
the physical register very well could be allocated to some
virtual register inside the basic block. So the extended
range could not be trusted.
This patch is a preparation for https://reviews.llvm.org/D38229,
where the goal is to insert DBG_VALUE after each new definition
of a variable, even if the virtual registers that the variable
was connected to has been coalesced into using the same physical
register (e.g. due to two address instructions). For more info
see https://bugs.llvm.org/show_bug.cgi?id=34545
Reviewers: aprantl, rnk, echristo
Reviewed By: aprantl
Subscribers: Ka-Ka, llvm-commits
Differential Revision: https://reviews.llvm.org/D38140
llvm-svn: 314414
After r313775, it's easier to maintain a parallel BitVector of spilled
locations indexed by location number.
I wasn't able to build a good reduced test case for this iteration of
the bug, but I added a more direct assertion that spilled values must
use frame index locations. If this bug reappears, it won't only fire on
the NEON vector code that we detected it on, but on medium-sized
integer-only programs as well.
llvm-svn: 313786
Summary:
The new code should be linear in the number of DBG_VALUEs, while the old
code was quadratic. NFC intended.
This is also hopefully a more direct expression of the problem, which is
to:
1. Rewrite all virtual register operands to stack slots or physical
registers
2. Uniquely number those machine operands, assigning them location
numbers
3. Rewrite all uses of the old location numbers in the interval map to
use the new location numbers
In r313400, I attempted to track which locations were spilled in a
parallel bitvector indexed by location number. My code was broken
because these location numbers are not stable during rewriting.
Reviewers: aprantl, hans
Subscribers: hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D38068
llvm-svn: 313775
This reverts r313640, originally r313400, one more time for essentially
the same issue. My BitVector of spilled location numbers isn't working
because we coalesce identical DBG_VALUE locations as we rewrite them,
invalidating the location numbers used to index the BitVector.
llvm-svn: 313679
I forgot to zero out the BitVector when reusing it between UserValues.
Later uses of the same location number for a different UserValue would
falsely indicate that they were spilled. Usually this would lead to
incorrect debug info, but in some cases they would indicate something
nonsensical like a memory location based on a vector register (Q8 on
ARM).
llvm-svn: 313640
This caused asserts in Chromium. See http://crbug.com/766261
> Summary:
> This comes up in optimized debug info for C++ programs that pass and
> return objects indirectly by address. In these programs,
> llvm.dbg.declare survives optimization, which causes us to emit indirect
> DBG_VALUE instructions. The fast register allocator knows to insert
> DW_OP_deref when spilling indirect DBG_VALUE instructions, but the
> LiveDebugVariables did not until this change.
>
> This fixes part of PR34513. I need to look into why this doesn't work at
> -O0 and I'll send follow up patches to handle that.
>
> Reviewers: aprantl, dblaikie, probinson
>
> Subscribers: qcolombet, hiraditya, llvm-commits
>
> Differential Revision: https://reviews.llvm.org/D37911
llvm-svn: 313589
Summary:
This comes up in optimized debug info for C++ programs that pass and
return objects indirectly by address. In these programs,
llvm.dbg.declare survives optimization, which causes us to emit indirect
DBG_VALUE instructions. The fast register allocator knows to insert
DW_OP_deref when spilling indirect DBG_VALUE instructions, but the
LiveDebugVariables did not until this change.
This fixes part of PR34513. I need to look into why this doesn't work at
-O0 and I'll send follow up patches to handle that.
Reviewers: aprantl, dblaikie, probinson
Subscribers: qcolombet, hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D37911
llvm-svn: 313400
The debug value live intervals computed by Live Debug Variables may extend
beyond the range of the debug location's lexical scope. In this case,
splitting of an interval can result in an interval outside of the scope being
created, causing extra unnecessary DBG_VALUEs to be emitted. To prevent this,
trim the intervals to the lexical scope.
This resolves PR33730.
Reviewers: aprantl
Differential Revision: https://reviews.llvm.org/D35953
llvm-svn: 309933
Summary:
Since r293359, most dump() function are only defined when
`!defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)` holds. print() functions
only used by dump() functions are now unused in release builds,
generating lots of warnings. This patch only defines some print()
functions if they are used.
Reviewers: MatzeB
Reviewed By: MatzeB
Subscribers: arsenm, mzolotukhin, nhaehnle, llvm-commits
Differential Revision: https://reviews.llvm.org/D35949
llvm-svn: 309553
Rename the DEBUG_TYPE to match the names of corresponding passes where
it makes sense. Also establish the pattern of simply referencing
DEBUG_TYPE instead of repeating the passname where possible.
llvm-svn: 303921
We had various variants of defining dump() functions in LLVM. Normalize
them (this should just consistently implement the things discussed in
http://lists.llvm.org/pipermail/cfe-dev/2014-January/034323.html
For reference:
- Public headers should just declare the dump() method but not use
LLVM_DUMP_METHOD or #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
- The definition of a dump method should look like this:
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void MyClass::dump() {
// print stuff to dbgs()...
}
#endif
llvm-svn: 293359
Rename from addOperand to just add, to match the other method that has been
added to MachineInstrBuilder for adding more than just 1 operand.
See https://reviews.llvm.org/D28057 for the whole discussion.
Differential Revision: https://reviews.llvm.org/D28556
llvm-svn: 291891
LiveDebugVariables doesn't propagate DBG_VALUEs accross basic block
boundaries any more; this functionality was split into LiveDebugValues.
We can thus drop the now dead references to LexicalScopes from LiveDebugVariables.
llvm-svn: 282638
When a phi node is finally lowered to a machine instruction it is
important that the lowered "load" instruction is placed before the
associated DEBUG_VALUE entry describing the value loaded.
Renamed the existing SkipPHIsAndLabels to SkipPHIsLabelsAndDebug to
more fully describe that it also skips debug entries. Then used the
"new" function SkipPHIsAndLabels when the debug information should not
be skipped when placing the lowered "load" instructions so that it is
placed before the debug entries.
Differential Revision: https://reviews.llvm.org/D23760
llvm-svn: 281727
This used to be free, copying and moving DebugLocs became expensive
after the metadata rewrite. Passing by reference eliminates a ton of
track/untrack operations. No functionality change intended.
llvm-svn: 272512
Take MachineInstr by reference instead of by pointer in SlotIndexes and
the SlotIndex wrappers in LiveIntervals. The MachineInstrs here are
never null, so this cleans up the API a bit. It also incidentally
removes a few implicit conversions from MachineInstrBundleIterator to
MachineInstr* (see PR26753).
At a couple of call sites it was convenient to convert to a range-based
for loop over MachineBasicBlock::instr_begin/instr_end, so I added
MachineBasicBlock::instrs.
llvm-svn: 262115
LiveDebugVariables unconditionally propagates all DBG_VALUE down the
dominator tree, which happens to work fine if there already is another
DBG_VALUE or the DBG_VALUE happends to describe a single-assignment vreg
but is otherwise wrong if the DBG_VALUE is coming from only one of the
predecessors.
In r255759 we introduced a proper data flow analysis scheduled after
LiveDebugVariables that correctly propagates DBG_VALUEs across basic block
boundaries. With the new pass in place, the incorrect propagation in
LiveDebugVariables can be retired witout loosing any of the benefits
where LiveDebugVariables happened to do the right thing.
llvm-svn: 256188
Previously, subprograms contained a metadata reference to the function they
described. Because most clients need to get or set a subprogram for a given
function rather than the other way around, this created unneeded inefficiency.
For example, many passes needed to call the function llvm::makeSubprogramMap()
to build a mapping from functions to subprograms, and the IR linker needed to
fix up function references in a way that caused quadratic complexity in the IR
linking phase of LTO.
This change reverses the direction of the edge by storing the subprogram as
function-level metadata and removing DISubprogram's function field.
Since this is an IR change, a bitcode upgrade has been provided.
Fixes PR23367. An upgrade script for textual IR for out-of-tree clients is
attached to the PR.
Differential Revision: http://reviews.llvm.org/D14265
llvm-svn: 252219
Finish off PR23080 by renaming the debug info IR constructs from `MD*`
to `DI*`. The last of the `DIDescriptor` classes were deleted in
r235356, and the last of the related typedefs removed in r235413, so
this has all baked for about a week.
Note: If you have out-of-tree code (like a frontend), I recommend that
you get everything compiling and tests passing with the *previous*
commit before updating to this one. It'll be easier to keep track of
what code is using the `DIDescriptor` hierarchy and what you've already
updated, and I think you're extremely unlikely to insert bugs. YMMV of
course.
Back to *this* commit: I did this using the rename-md-di-nodes.sh
upgrade script I've attached to PR23080 (both code and testcases) and
filtered through clang-format-diff.py. I edited the tests for
test/Assembler/invalid-generic-debug-node-*.ll by hand since the columns
were off-by-three. It should work on your out-of-tree testcases (and
code, if you've followed the advice in the previous paragraph).
Some of the tests are in badly named files now (e.g.,
test/Assembler/invalid-mdcompositetype-missing-tag.ll should be
'dicompositetype'); I'll come back and move the files in a follow-up
commit.
llvm-svn: 236120
r235050 dropped the inlined-at field from `MDLocalVariable`, deferring
to the `!dbg` attachments. Fix `UserValue` to take the `!dbg` into
account when differentiating between variables.
llvm-svn: 235140
Remove 'inlinedAt:' from MDLocalVariable. Besides saving some memory
(variables with it seem to be single largest `Metadata` contributer to
memory usage right now in -g -flto builds), this stops optimization and
backend passes from having to change local variables.
The 'inlinedAt:' field was used by the backend in two ways:
1. To tell the backend whether and into what a variable was inlined.
2. To create a unique id for each inlined variable.
Instead, rely on the 'inlinedAt:' field of the intrinsic's `!dbg`
attachment, and change the DWARF backend to use a typedef called
`InlinedVariable` which is `std::pair<MDLocalVariable*, MDLocation*>`.
This `DebugLoc` is already passed reliably through the backend (as
verified by r234021).
This commit removes the check from r234021, but I added a new check
(that will survive) in r235048, and changed the `DIBuilder` API in
r235041 to require a `!dbg` attachment whose 'scope:` is in the same
`MDSubprogram` as the variable's.
If this breaks your out-of-tree testcases, perhaps the script I used
(mdlocalvariable-drop-inlinedat.sh) will help; I'll attach it to PR22778
in a moment.
llvm-svn: 235050
As a follow-up to r234021, assert that a debug info intrinsic variable's
`MDLocalVariable::getInlinedAt()` always matches the
`MDLocation::getInlinedAt()` of its `!dbg` attachment.
The goal here is to get rid of `MDLocalVariable::getInlinedAt()`
entirely (PR22778), but I'll let these assertions bake for a while
first.
If you have an out-of-tree backend that just broke, you're probably
attaching the wrong `DebugLoc` to a `DBG_VALUE` instruction. The one
you want is the location that was attached to the corresponding
`@llvm.dbg.declare` or `@llvm.dbg.value` call that you started with.
llvm-svn: 234038
uses of TM->getSubtargetImpl and propagate to all calls.
This could be a debugging regression in places where we had a
TargetMachine and/or MachineFunction but don't have it as part
of the MachineInstr. Fixing this would require passing a
MachineFunction/Function down through the print operator, but
none of the existing uses in tree seem to do this.
llvm-svn: 230710
utils/sort_includes.py.
I clearly haven't done this in a while, so more changed than usual. This
even uncovered a missing include from the InstrProf library that I've
added. No functionality changed here, just mechanical cleanup of the
include order.
llvm-svn: 225974
argument of the llvm.dbg.declare/llvm.dbg.value intrinsics.
Previously, DIVariable was a variable-length field that has an optional
reference to a Metadata array consisting of a variable number of
complex address expressions. In the case of OpPiece expressions this is
wasting a lot of storage in IR, because when an aggregate type is, e.g.,
SROA'd into all of its n individual members, the IR will contain n copies
of the DIVariable, all alike, only differing in the complex address
reference at the end.
By making the complex address into an extra argument of the
dbg.value/dbg.declare intrinsics, all of the pieces can reference the
same variable and the complex address expressions can be uniqued across
the CU, too.
Down the road, this will allow us to move other flags, such as
"indirection" out of the DIVariable, too.
The new intrinsics look like this:
declare void @llvm.dbg.declare(metadata %storage, metadata %var, metadata %expr)
declare void @llvm.dbg.value(metadata %storage, i64 %offset, metadata %var, metadata %expr)
This patch adds a new LLVM-local tag to DIExpressions, so we can detect
and pretty-print DIExpression metadata nodes.
What this patch doesn't do:
This patch does not touch the "Indirect" field in DIVariable; but moving
that into the expression would be a natural next step.
http://reviews.llvm.org/D4919
rdar://problem/17994491
Thanks to dblaikie and dexonsmith for reviewing this patch!
Note: I accidentally committed a bogus older version of this patch previously.
llvm-svn: 218787