This gets rid of a bunch of random InvalidDecl bools in sema, changing
us to use the following approach:
1. When analyzing a declspec or declarator, if an error is found, we
set a bit in Declarator saying that it is invalid.
2. Once the Decl is created by sema, we immediately set the isInvalid
bit on it from what is in the declarator. From this point on, sema
consistently looks at and sets the bit on the decl.
This gives a very clear separation of concerns and simplifies a bunch
of code. In addition to this, this patch makes these changes:
1. it renames DeclSpec::getInvalidType() -> isInvalidType().
2. various "merge" functions no longer return bools: they just set the
invalid bit on the dest decl if invalid.
3. The ActOnTypedefDeclarator/ActOnFunctionDeclarator/ActOnVariableDeclarator
methods now set invalid on the decl returned instead of returning an
invalid bit byref.
4. In SemaType, refering to a typedef that was invalid now propagates the
bit into the resultant type. Stuff declared with the invalid typedef
will now be marked invalid.
5. Various methods like CheckVariableDeclaration now return void and set the
invalid bit on the decl they check.
There are a few minor changes to tests with this, but the only major bad
result is test/SemaCXX/constructor-recovery.cpp. I'll take a look at this
next.
llvm-svn: 70020
failures that involve malformed types, e.g., "typename X::foo" where
"foo" isn't a type, or "std::vector<void>" that doens't instantiate
properly.
Similarly, be a bit smarter in our handling of ambiguities that occur
in Sema::getTypeName, to eliminate duplicate error messages about
ambiguous name lookup.
This eliminates two XFAILs in test/SemaCXX, one of which was crying
out to us, trying to tell us that we were producing repeated error
messages.
llvm-svn: 68251
within nested-name-specifiers, e.g., for the "apply" in
typename MetaFun::template apply<T1, T2>::type
At present, we can't instantiate these nested-name-specifiers, so our
testing is sketchy.
llvm-svn: 68081
representation handles the various ways in which one can name a
template, including unqualified references ("vector"), qualified
references ("std::vector"), and dependent template names
("MetaFun::template apply").
One immediate effect of this change is that the representation of
nested-name-specifiers in type names for class template
specializations (e.g., std::vector<int>) is more accurate. Rather than
representing std::vector<int> as
std::(vector<int>)
we represent it as
(std::vector)<int>
which more closely follows the C++ grammar.
Additionally, templates are no longer represented as declarations
(DeclPtrTy) in Parse-Sema interactions. Instead, I've introduced a new
OpaquePtr type (TemplateTy) that holds the representation of a
TemplateName. This will simplify the handling of dependent
template-names, once we get there.
llvm-svn: 68074
pointer. Its purpose in life is to be a glorified void*, but which does not
implicitly convert to void* or other OpaquePtr's with a different UID.
Introduce Action::DeclPtrTy which is a typedef for OpaquePtr<0>. Change the
entire parser/sema interface to use DeclPtrTy instead of DeclTy*. This
makes the C++ compiler enforce that these aren't convertible to other opaque
types.
We should also convert ExprTy, StmtTy, TypeTy, AttrTy, BaseTy, etc,
but I don't plan to do that in the short term.
The one outstanding known problem with this patch is that we lose the
bitmangling optimization where ActionResult<DeclPtrTy> doesn't know how to
bitmangle the success bit into the low bit of DeclPtrTy. I will rectify
this with a subsequent patch.
llvm-svn: 67952
qualified name, e.g.,
foo::x
so that we retain the nested-name-specifier as written in the source
code and can reproduce that qualified name when printing the types
back (e.g., in diagnostics). This is PR3493, which won't be complete
until finished the other tasks mentioned near the end of this commit.
The parser's representation of nested-name-specifiers, CXXScopeSpec,
is now a bit fatter, because it needs to contain the scopes that
precede each '::' and keep track of whether the global scoping
operator '::' was at the beginning. For example, we need to keep track
of the leading '::', 'foo', and 'bar' in
::foo::bar::x
The Action's CXXScopeTy * is no longer a DeclContext *. It's now the
opaque version of the new NestedNameSpecifier, which contains a single
component of a nested-name-specifier (either a DeclContext * or a Type
*, bitmangled).
The new sugar type QualifiedNameType composes a sequence of
NestedNameSpecifiers with a representation of the type we're actually
referring to. At present, we only build QualifiedNameType nodes within
Sema::getTypeName. This will be extended to other type-constructing
actions (e.g., ActOnClassTemplateId).
Also on the way: QualifiedDeclRefExprs will also store a sequence of
NestedNameSpecifiers, so that we can print out the property
nested-name-specifier. I expect to also use this for handling
dependent names like Fibonacci<I - 1>::value.
llvm-svn: 67265
std::vector<int>::allocator_type
When we parse a template-id that names a type, it will become either a
template-id annotation (which is a parsed representation of a
template-id that has not yet been through semantic analysis) or a
typename annotation (where semantic analysis has resolved the
template-id to an actual type), depending on the context. We only
produce a type in contexts where we know that we only need type
information, e.g., in a type specifier. Otherwise, we create a
template-id annotation that can later be "upgraded" by transforming it
into a typename annotation when the parser needs a type. This occurs,
for example, when we've parsed "std::vector<int>" above and then see
the '::' after it. However, it means that when writing something like
this:
template<> class Outer::Inner<int> { ... };
We have two tokens to represent Outer::Inner<int>: one token for the
nested name specifier Outer::, and one template-id annotation token
for Inner<int>, which will be passed to semantic analysis to define
the class template specialization.
Most of the churn in the template tests in this patch come from an
improvement in our error recovery from ill-formed template-ids.
llvm-svn: 65467
us whether there was an error in trying to parse a type-name (type-id
in C++). This allows propagation of errors further in the compiler,
suppressing more bogus error messages.
llvm-svn: 64922
than a Decl, which gives us some more flexibility to express the
results with the type system. There are no clients using this
flexibility yet, but it's meant to be able to describe qualified names
as written in the source (e.g., "foo::type") or template-ids that name
a class template specialization (e.g., "std::vector<INT>").
DeclSpec's TST_typedef has become TST_typename, to reflect its use to
describe types found by name (that may or may not be typedefs). The
type representation of a DeclSpec with TST_typename is an opaque
QualType pointer. All users of TST_typedef, both direct and indirect,
have been updated for these changes.
llvm-svn: 64141
.def file for each library. This means that adding a diagnostic
to sema doesn't require all the other libraries to be rebuilt.
Patch by Anders Johnsen!
llvm-svn: 63111
- When it's safe, ActionResult uses the low bit of the pointer for
the "invalid" flag rather than a separate "bool" value. This keeps
GCC from generating some truly awful code, for a > 3x speedup in the
result-passing microbenchmark.
- When DISABLE_SMART_POINTERS is defined, store an ActionResult
within ASTOwningResult rather than an ASTOwningPtr. Brings the
performance benefits of the above to smart pointers with
DISABLE_SMART_POINTERS defined.
Sadly, these micro-benchmark performance improvements don't seem to
make much of a difference on Cocoa.h right now. However, they're
harmless and might help with future optimizations.
llvm-svn: 63061
Make C++ classes track the POD property (C++ [class]p4)
Track the existence of a copy assignment operator.
Implicitly declare the copy assignment operator if none is provided.
Implement most of the parsing job for the G++ type traits extension.
Fully implement the low-hanging fruit of the type traits:
__is_pod: Whether a type is a POD.
__is_class: Whether a type is a (non-union) class.
__is_union: Whether a type is a union.
__is_enum: Whether a type is an enum.
__is_polymorphic: Whether a type is polymorphic (C++ [class.virtual]p1).
llvm-svn: 61746
verified to be simple type specifiers, so there is no need for it
to call TryAnnotateTypeOrScopeToken.
Make MaybeParseCXXScopeSpecifier reject ::new and ::delete with a
hard error now that it may never be transitively called in a
context where these are legal. This allows me to start
disentangling things more.
llvm-svn: 61659
-Change Parser::ParseCXXScopeSpecifier to MaybeParseCXXScopeSpecifier
-Remove Parser::isTokenCXXScopeSpecifier and fold it into MaybeParseCXXScopeSpecifier
-Rename Parser::TryAnnotateScopeToken to TryAnnotateCXXScopeToken and only allow it to be called when in C++
llvm-svn: 60117
operator+, directly, using the same mechanism as all other special
names.
Removed the "special" identifiers for the overloaded operators from
the identifier table and IdentifierInfo data structure. IdentifierInfo
is back to representing only real identifiers.
Added a new Action, ActOnOperatorFunctionIdExpr, that builds an
expression from an parsed operator-function-id (e.g., "operator
+"). ActOnIdentifierExpr used to do this job, but
operator-function-ids are no longer represented by IdentifierInfo's.
Extended Declarator to store overloaded operator names.
Sema::GetNameForDeclarator now knows how to turn the operator
name into a DeclarationName for the overloaded operator.
Except for (perhaps) consolidating the functionality of
ActOnIdentifier, ActOnOperatorFunctionIdExpr, and
ActOnConversionFunctionExpr into a common routine that builds an
appropriate DeclRefExpr by looking up a DeclarationName, all of the
work on normalizing declaration names should be complete with this
commit.
llvm-svn: 59526
and let the clients push whatever they want into the DiagnosticInfo
instead of hard coding a few forms. Also switch various clients to
use Diag(Tok, ...) instead of Diag(Tok.getLocation(), ...) as the
canonical form to simplify the code a bit.
llvm-svn: 59509
C++ constructors, destructors, and conversion functions now have a
FETokenInfo field that IdentifierResolver can access, so that these
special names are handled just like ordinary identifiers. A few other
Sema routines now use DeclarationNames instead of IdentifierInfo*'s.
To validate this design, this code also implements parsing and
semantic analysis for id-expressions that name conversion functions,
e.g.,
return operator bool();
The new parser action ActOnConversionFunctionExpr takes the result of
parsing "operator type-id" and turning it into an expression, using
the IdentifierResolver with the DeclarationName of the conversion
function. ActOnDeclarator pushes those conversion function names into
scope so that the IdentifierResolver can find them, of course.
llvm-svn: 59462