Cross-class copies being expensive is actually a trait of the microarchitecture, but as I haven't yet seen an example of a microarchitecture where they're cheap it seems best to just enable this by default, covering the non-mcpu build case.
llvm-svn: 217674
This fixes a call to sys::fs::equivalent that should've been to
CodeCoverageTool::equivalentFiles, which lets us restore the test of
r217476 that was removed in r217478.
This reverts r217478, but the test works this time.
llvm-svn: 217646
A "stub found found" diagnostic is emitted when RuntimeDyldChecker's stub lookup
logic fails to find the requested stub. The obvious reason for the failure is
that no such stub has been created, but it can also fail for internal symbols if
the symbol offset is not computed correctly (E.g. due to a mangled relocation
addend). This patch adds a comment about the latter case so that it's not
overlooked.
Inspired by confusion experienced during test case construction for r217635.
llvm-svn: 217643
And since it /looked/ like the DwarfStrSectionSym was unused, I tried
removing it - but then it turned out that DwarfStringPool was
reconstructing the same label (and expecting it to have already been
emitted) and uses that.
So I kept it around, but wanted to pass it in to users - since it seemed
a bit silly for DwarfStringPool to have it passed in and returned but
itself have no use for it. The only two users don't handle strings in
both .dwo and .o files so they only ever need the one symbol - no need
to keep it (and have an unused symbol) in the DwarfStringPool used for
fission/.dwo.
Refactor a bunch of accelerator table usage to remove duplication so I
didn't have to touch 4-5 callers.
llvm-svn: 217628
The main difference is the removal of
std::error_code exists(const Twine &path, bool &result);
It was an horribly redundant interface since a file not existing is also a valid
error_code. Now we have an access function that returns just an error_code. This
is the only function that has to be implemented for Unix and Windows. The
functions can_write, exists and can_execute an now just wrappers.
One still has to be very careful using these function to avoid introducing
race conditions (Time of check to time of use).
llvm-svn: 217625
Inline asm may specify 'U' and 'X' constraints to print a 'u' for an
update-form memory reference, or an 'x' for an indexed-form memory
reference. However, these are really only useful in GCC internal code
generation. In inline asm the operand of the memory constraint is
typically just a register containing the address, so 'U' and 'X' make
no sense.
This patch quietly accepts 'U' and 'X' in inline asm patterns, but
otherwise does nothing. If we ever unexpectedly see a non-register,
we'll assert and sort it out afterwards.
I've added a new test for these constraints; the test case should be
used for other asm-constraints changes down the road.
llvm-svn: 217622
Do
(shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
This is already done for multiplies, but since multiplies
by powers of two are turned into shifts, we also need
to handle it here.
This might want checks for isLegalAddImmediate to avoid
transforming an add of a legal immediate with one that isn't.
llvm-svn: 217610
r189189 implemented AVX512 unpack by essentially performing a 256-bit unpack
between the low and the high 256 bits of src1 into the low part of the
destination and another unpack of the low and high 256 bits of src2 into the
high part of the destination.
I don't think that's how unpack works. AVX512 unpack simply has more 128-bit
lanes but other than it works the same way as AVX. So in each 128-bit lane,
we're always interleaving certain parts of both operands rather different
parts of one of the operands.
E.g. for this:
__v16sf a = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 };
__v16sf b = { 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 };
__v16sf c = __builtin_shufflevector(a, b, 0, 8, 1, 9, 4, 12, 5, 13, 16,
24, 17, 25, 20, 28, 21, 29);
we generated punpcklps (notice how the elements of a and b are not interleaved
in the shuffle). In turn, c was set to this:
0 16 1 17 4 20 5 21 8 24 9 25 12 28 13 29
Obviously this should have just returned the mask vector of the shuffle
vector.
I mostly reverted this change and made sure the original AVX code worked
for 512-bit vectors as well.
Also updated the tests because they matched the logic from the code.
llvm-svn: 217602
This is an extension of the change made with r215820:
http://llvm.org/viewvc/llvm-project?view=revision&revision=215820
That patch allowed combining of splatted vector FP constants that are multiplied.
This patch allows combining non-uniform vector FP constants too by relaxing the
check on the type of vector. Also, canonicalize a vector fmul in the
same way that we already do for scalars - if only one operand of the fmul is a
constant, make it operand 1. Otherwise, we miss potential folds.
This fold is also done by -instcombine, but it's possible that extra
fmuls may have been generated during lowering.
Differential Revision: http://reviews.llvm.org/D5254
llvm-svn: 217599
Refactored the R600_LDS_1A2D class a bit to get it to actually work.
It seemed to be previously unused and broken.
We also have to disable the conversion to the noret variant for now in
R600ISelLowering because the getLDSNoRetOp method only handles 1A1D LDS ops.
Someone can feel free to modify the AMDGPU::getLDSNoRetOp method to
work for more than 1A1D variants of LDS operations. It's being left as a
future TODO for now.
Signed-off-by: Aaron Watry <awatry at gmail.com>
Reviewed-by: Matt Arsenault <matthew.arsenault@amd.com>
llvm-svn: 217596
Now that the operations are all implemented, we can test this sub-arch here.
Signed-off-by: Aaron Watry <awatry@gmail.com>
Reviewed-by: Matt Arsenault <matthew.arsenault@amd.com>
llvm-svn: 217595
This was only present for SI before.
Cayman may still be missing, but I am unable to test that currently.
v2: Don't create atomicrmw max tests in separate file
Signed-off-by: Aaron Watry <awatry@gmail.com>
Reviewed-by: Matt Arsenault <matthew.arsenault@amd.com>
CC: Tom Stellard <thomas.stellard@amd.com>
llvm-svn: 217589
Summary:
They were used in the 'Module Structure' example but weren't otherwise
documented.
Credit to Reed Kotler for noticing.
Reviewers: hans
Reviewed By: hans
Subscribers: hans, llvm-commits
Differential Revision: http://reviews.llvm.org/D5191
llvm-svn: 217583
David Blaikie's commits r217563 & r217564, which added shared_ptr to the
CostPool have fixed some memory leak issues exposed by the PBQP with
coalescing constraints.
The sanitizer bot was failing because of those leaks. Now that the leaks
are gone, we can reenable the aarch64/pbqp test.
llvm-svn: 217580
We used to crash processing any relevant @llvm.assume on a 32-bit target
(because we'd ask SE to subtract expressions of differing types). I've copied
our 'simple.ll' test, but with the data layout from arm-linux-gnueabihf to get
some meaningful test coverage here.
llvm-svn: 217574
Leveraging both intrusive shared_ptr-ing (std::enable_shared_from_this)
and shared_ptr<T>-owning-U (to allow external users to hold
std::shared_ptr<CostT> while keeping the underlying PoolEntry alive).
The intrusiveness could be removed if we had a weak_set that implicitly
removed items from the set when their underlying data went away.
This /might/ fix an existing memory leak reported by LeakSanitizer in
r217504.
llvm-svn: 217563
Need to convert the 64 element offset into bytes, not just the element
size like the normal case instructions.
Noticed by inspection. This can't be hit now because
st64 instructions aren't emitted during instruction selection,
and the post-RA scheduler isn't enabled.
llvm-svn: 217560
With this a DataLayoutPass can be reused for multiple modules.
Once we have doInitialization/doFinalization, it doesn't seem necessary to pass
a Module to the constructor.
Overall this change seems in line with the idea of making DataLayout a required
part of Module. With it the only way of having a DataLayout used is to add it
to the Module.
llvm-svn: 217548
The routine that determines an alignment given some SCEV returns zero if the
answer is unknown. In a case where we could determine the increment of an
AddRec but not the starting alignment, we would compute the integer modulus by
zero (which is illegal and traps). Prevent this by returning early if either
the start or increment alignment is unknown (zero).
llvm-svn: 217544
The increase of the interleave factor to 4 has side-effects
like performance losses eg. due to reminder loops being executed
more frequently and may increase code size. It requires more
analysis and careful heuristic tuning. Expect double digit gains
in small benchmarks like lowercase.c and losses in puzzle.c.
llvm-svn: 217540
Summary:
Make CallingConv::ID a plain unsigned instead of enum with a
fixed set of valus. LLVM IR allows arbitraty calling conventions (you are
free to write cc12345), and loading them as enum is an undefined
behavior. This was reported by UBSan.
Test Plan: llvm regression test suite
Reviewers: nicholas
Reviewed By: nicholas
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D5248
llvm-svn: 217529
"Unroll" is not the appropriate name for this variable. Clang already uses
the term "interleave" in pragmas and metadata for this.
Differential Revision: http://reviews.llvm.org/D5066
llvm-svn: 217528
Noticed while trying to understand how the merge of forward decalred types
and defintions work.
Reviewers: echristo, dblaikie, aprantl
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D5291
llvm-svn: 217514
This adds target specific support for using the PBQP register allocator on the
AArch64, for the A57 cpu.
By default, the PBQP allocator is not used, unless explicitely required
on the command line with "-aarch64-pbqp".
llvm-svn: 217504
using static relocation model and small code model.
Summary: currently we generate GOT based relocations for weak symbol
references regardless of the underlying relocation model. This should
be change so that in static relocation model we use a constant pool
load instead.
Patch from: Keith Walker
Reviewers: Renato Golin, Tim Northover
llvm-svn: 217503
The only Thumb-1 multi-store capable of using LR is the PUSH instruction, which
translates to STMDB, so we shouldn't convert STMIAs.
Patch by Sergey Dmitrouk.
llvm-svn: 217498
This adds support for reading the "bigobj" variant of COFF produced by
cl's /bigobj and mingw's -mbig-obj.
The most significant difference that bigobj brings is more than 2**16
sections to COFF.
bigobj brings a few interesting differences with it:
- It doesn't have a Characteristics field in the file header.
- It doesn't have a SizeOfOptionalHeader field in the file header (it's
only used in executable files).
- Auxiliary symbol records have the same width as a symbol table entry.
Since symbol table entries are bigger, so are auxiliary symbol
records.
Write support will come soon.
Differential Revision: http://reviews.llvm.org/D5259
llvm-svn: 217496
This fixes the generation of broken LLVMExports.cmake file by
the Autoconf/Makefile build system when --enable-shared is passed to
configure.
When --enable_shared is passed the Makefile.rules does not set the
LLVMConfigLibs variable which cmake/modules/Makefile previously relied
on. Now it runs the llvm-config command itself to get the library names.
This still isn't perfect because the generated LLVM targets refer to the
static libraries and not the shared library but that is much larger
problem to fix.
llvm-svn: 217484
It appears that the -filename-equivalence option for testing llvm-cov
doesn't work correctly with -show-expansions. I'm reverting this test
to get the bots green while I look into fixing that.
This partially reverts r217476
llvm-svn: 217478
This commit adds aliases for the sync instruction (synciobdma,
syncs, syncw, syncws) which are used by the Octeon CPU.
Reviewed by D. Sanders
llvm-svn: 217477
So that the two operations in DwarfDebug couldn't get separated (because
I accidentally separated them in some work in progress), put them
together. While we're here, move DwarfUnit::addRange to
DwarfCompileUnit, since it's not relevant to type units.
llvm-svn: 217468
PrevSection/PrevCU are used to detect holes in the address range of a CU
to ensure the DW_AT_ranges does not include those holes. When we see a
function with no debug info, though it may be in the same range as the
prior and subsequent functions, there should be a gap in the CU's
ranges. By setting PrevCU to null in that case, the range would not be
extended to cover the gap.
llvm-svn: 217466
This is the plugin version of pr20882.
This handles the case of every common symbol being in the IR. We will need some
support from gold to handle the case where some symbols are in ELF and some in
the IR.
llvm-svn: 217458
This is a first pass at a scheduling model for Jaguar.
It's structured largely on the existing SandyBridge and SLM sched models.
Using this model, in addition to turning on the PostRA scheduler, results in
some perf wins on internal and 3rd party benchmarks. There's not much difference
in LLVM's test-suite benchmarking subset of tests.
Differential Revision: http://reviews.llvm.org/D5229
llvm-svn: 217457
Summary:
This directive is used to reset the assembler options to their initial values.
Assembly programmers use it in conjunction with the ".set mipsX" directives.
This patch depends on the .set push/pop directive (http://reviews.llvm.org/D4821).
Contains work done by Matheus Almeida.
Reviewers: dsanders
Reviewed By: dsanders
Differential Revision: http://reviews.llvm.org/D4957
llvm-svn: 217438
Summary:
This patch moves the profile reading logic out of the Sample Profile
transformation into a generic profile reader facility in
lib/ProfileData.
The intent is to use this new reader to implement a sample profile
reader/writer that can be used to convert sample profiles from external
sources into LLVM.
This first patch introduces no functional changes. It moves the profile
reading code from lib/Transforms/SampleProfile.cpp into
lib/ProfileData/SampleProfReader.cpp.
In subsequent patches I will:
- Add a bitcode format for sample profiles to allow for more efficient
encoding of the profile.
- Add a writer for both text and bitcode format profiles.
- Add a 'convert' command to llvm-profdata to be able to convert between
the two (and serve as entry point for other sample profile formats).
Reviewers: bogner, echristo
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D5250
llvm-svn: 217437
Summary:
The GPR size is more a property of the subtarget than that of the ABI so move
this information to the MipsSubtarget.
No functional change.
Reviewers: vmedic
Reviewed By: vmedic
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D5009
llvm-svn: 217436
Summary:
In AT&T annotation for both x86_64 and x32 calls should be printed as
callq in assembly. It's only a matter of correct mnemonic, object output
is ok.
Test Plan: trivial test added
Reviewers: nadav, dschuff, craig.topper
Subscribers: llvm-commits, zinovy.nis
Differential Revision: http://reviews.llvm.org/D5213
llvm-svn: 217435
Summary:
These directives are used to save the current assembler options (in the case of ".set push") and restore the previously saved options (in the case of ".set pop").
Contains work done by Matheus Almeida.
Reviewers: dsanders
Reviewed By: dsanders
Differential Revision: http://reviews.llvm.org/D4821
llvm-svn: 217432
This solves the problem of having a kill flag inside a loop
with a definition of the register prior to the loop:
%vreg368<def> ...
Inside loop:
%vreg520<def> = COPY %vreg368
%vreg568<def,tied1> = add %vreg341<tied0>, %vreg520<kill>
=> was coalesced into =>
%vreg568<def,tied1> = add %vreg341<tied0>, %vreg368<kill>
MachineVerifier then complained:
*** Bad machine code: Virtual register killed in block, but needed live out. ***
The kill flag for %vreg368 is incorrect, and is cleared by this patch.
This is similar to the clearing done at the end of
MachineSinking::SinkInstruction().
Patch provided by Jonas Paulsson.
Reviewed by Quentin Colombet and Juergen Ributzka.
llvm-svn: 217427
llvm-cov had a SourceRange type that was nearly identical to a
CountedRegion except that it shaved off a couple of fields. There
aren't likely to be enough of these for the minor memory savings to be
worth the extra complexity here.
llvm-svn: 217417
When compiling without SSE2, isTruncStoreLegal(F64, F32) would return Legal, whereas with SSE2 it would return Expand. And since the Target doesn't seem to actually handle a truncstore for double -> float, it would just output a store of a full double in the space for a float hence overwriting other bits on the stack.
Patch by Luqman Aden!
llvm-svn: 217410
Previously, fast-isel would not clean up after failing to select a call
instruction, because it would have called flushLocalValueMap() which moves
the insertion point, making SavedInsertPt in selectInstruction() invalid.
Fixing this by making SavedInsertPt a member variable, and having
flushLocalValueMap() update it.
This removes some redundant code at -O0, and more importantly fixes PR20863.
Differential Revision: http://reviews.llvm.org/D5249
llvm-svn: 217401
to make sure we don't do invalid load of an enum. Share the
conversion code between llvm::Module implementation and the
verifier.
This bug was reported by UBSan.
llvm-svn: 217395
Assert in scheduler from an inserted copy_to_regclass from
a constant.
This only seems to break sometimes when a constant initializer
address is forced into VGPRs in a non-entry block. No test
since the only case I've managed to hit only happens with a future
patch, and that case will also not be a problem once scalar instructions
are used in non-entry blocks.
llvm-svn: 217380
This adds a basic (but important) use of @llvm.assume calls in ScalarEvolution.
When SE is attempting to validate a condition guarding a loop (such as whether
or not the loop count can be zero), this check should also include dominating
assumptions.
llvm-svn: 217348
From a combination of @llvm.assume calls (and perhaps through other means, such
as range metadata), it is possible that all bits of a return value might be
known. Previously, InstCombine did not check for this (which is understandable
given assumptions of constant propagation), but means that we'd miss simple
cases where assumptions are involved.
llvm-svn: 217346
This change teaches LazyValueInfo to use the @llvm.assume intrinsic. Like with
the known-bits change (r217342), this requires feeding a "context" instruction
pointer through many functions. Aside from a little refactoring to reuse the
logic that turns predicates into constant ranges in LVI, the only new code is
that which can 'merge' the range from an assumption into that otherwise
computed. There is also a small addition to JumpThreading so that it can have
LVI use assumptions in the same block as the comparison feeding a conditional
branch.
With this patch, we can now simplify this as expected:
int foo(int a) {
__builtin_assume(a > 5);
if (a > 3) {
bar();
return 1;
}
return 0;
}
llvm-svn: 217345
This adds a ScalarEvolution-powered transformation that updates load, store and
memory intrinsic pointer alignments based on invariant((a+q) & b == 0)
expressions. Many of the simple cases we can get with ValueTracking, but we
still need something like this for the more complicated cases (such as those
with an offset) that require some algebra. Note that gcc's
__builtin_assume_aligned's optional third argument provides exactly for this
kind of 'misalignment' offset for which this kind of logic is necessary.
The primary motivation is to fixup alignments for vector loads/stores after
vectorization (and unrolling). This pass is added to the optimization pipeline
just after the SLP vectorizer runs (which, admittedly, does not preserve SE,
although I imagine it could). Regardless, I actually don't think that the
preservation matters too much in this case: SE computes lazily, and this pass
won't issue any SE queries unless there are any assume intrinsics, so there
should be no real additional cost in the common case (SLP does preserve DT and
LoopInfo).
llvm-svn: 217344
This builds on r217342, which added the infrastructure to compute known bits
using assumptions (@llvm.assume calls). That original commit added only a few
patterns (to catch common cases related to determining pointer alignment); this
change adds several other patterns for simple cases.
r217342 contained that, for assume(v & b = a), bits in the mask
that are known to be one, we can propagate known bits from the a to v. It also
had a known-bits transfer for assume(a = b). This patch adds:
assume(~(v & b) = a) : For those bits in the mask that are known to be one, we
can propagate inverted known bits from the a to v.
assume(v | b = a) : For those bits in b that are known to be zero, we can
propagate known bits from the a to v.
assume(~(v | b) = a): For those bits in b that are known to be zero, we can
propagate inverted known bits from the a to v.
assume(v ^ b = a) : For those bits in b that are known to be zero, we can
propagate known bits from the a to v. For those bits in
b that are known to be one, we can propagate inverted
known bits from the a to v.
assume(~(v ^ b) = a) : For those bits in b that are known to be zero, we can
propagate inverted known bits from the a to v. For those
bits in b that are known to be one, we can propagate
known bits from the a to v.
assume(v << c = a) : For those bits in a that are known, we can propagate them
to known bits in v shifted to the right by c.
assume(~(v << c) = a) : For those bits in a that are known, we can propagate
them inverted to known bits in v shifted to the right by c.
assume(v >> c = a) : For those bits in a that are known, we can propagate them
to known bits in v shifted to the right by c.
assume(~(v >> c) = a) : For those bits in a that are known, we can propagate
them inverted to known bits in v shifted to the right by c.
assume(v >=_s c) where c is non-negative: The sign bit of v is zero
assume(v >_s c) where c is at least -1: The sign bit of v is zero
assume(v <=_s c) where c is negative: The sign bit of v is one
assume(v <_s c) where c is non-positive: The sign bit of v is one
assume(v <=_u c): Transfer the known high zero bits
assume(v <_u c): Transfer the known high zero bits (if c is know to be a power
of 2, transfer one more)
A small addition to InstCombine was necessary for some of the test cases. The
problem is that when InstCombine was simplifying and, or, etc. it would fail to
check the 'do I know all of the bits' condition before checking less specific
conditions and would not fully constant-fold the result. I'm not sure how to
trigger this aside from using assumptions, so I've just included the change
here.
llvm-svn: 217343
This change, which allows @llvm.assume to be used from within computeKnownBits
(and other associated functions in ValueTracking), adds some (optional)
parameters to computeKnownBits and friends. These functions now (optionally)
take a "context" instruction pointer, an AssumptionTracker pointer, and also a
DomTree pointer, and most of the changes are just to pass this new information
when it is easily available from InstSimplify, InstCombine, etc.
As explained below, the significant conceptual change is that known properties
of a value might depend on the control-flow location of the use (because we
care that the @llvm.assume dominates the use because assumptions have
control-flow dependencies). This means that, when we ask if bits are known in a
value, we might get different answers for different uses.
The significant changes are all in ValueTracking. Two main changes: First, as
with the rest of the code, new parameters need to be passed around. To make
this easier, I grouped them into a structure, and I made internal static
versions of the relevant functions that take this structure as a parameter. The
new code does as you might expect, it looks for @llvm.assume calls that make
use of the value we're trying to learn something about (often indirectly),
attempts to pattern match that expression, and uses the result if successful.
By making use of the AssumptionTracker, the process of finding @llvm.assume
calls is not expensive.
Part of the structure being passed around inside ValueTracking is a set of
already-considered @llvm.assume calls. This is to prevent a query using, for
example, the assume(a == b), to recurse on itself. The context and DT params
are used to find applicable assumptions. An assumption needs to dominate the
context instruction, or come after it deterministically. In this latter case we
only handle the specific case where both the assumption and the context
instruction are in the same block, and we need to exclude assumptions from
being used to simplify their own ephemeral values (those which contribute only
to the assumption) because otherwise the assumption would prove its feeding
comparison trivial and would be removed.
This commit adds the plumbing and the logic for a simple masked-bit propagation
(just enough to write a regression test). Future commits add more patterns
(and, correspondingly, more regression tests).
llvm-svn: 217342
It's probably not a huge deal to not do this - if we could, maybe the
address could be reused by a subprogram low_pc and avoid an extra
relocation, but it's just one per CU at best.
llvm-svn: 217338
This adds a set of utility functions for collecting 'ephemeral' values. These
are LLVM IR values that are used only by @llvm.assume intrinsics (directly or
indirectly), and thus will be removed prior to code generation, implying that
they should be considered free for certain purposes (like inlining). The
inliner's cost analysis, and a few other passes, have been updated to account
for ephemeral values using the provided functionality.
This functionality is important for the usability of @llvm.assume, because it
limits the "non-local" side-effects of adding llvm.assume on inlining, loop
unrolling, etc. (these are hints, and do not generate code, so they should not
directly contribute to estimates of execution cost).
llvm-svn: 217335
This adds an immutable pass, AssumptionTracker, which keeps a cache of
@llvm.assume call instructions within a module. It uses callback value handles
to keep stale functions and intrinsics out of the map, and it relies on any
code that creates new @llvm.assume calls to notify it of the new instructions.
The benefit is that code needing to find @llvm.assume intrinsics can do so
directly, without scanning the function, thus allowing the cost of @llvm.assume
handling to be negligible when none are present.
The current design is intended to be lightweight. We don't keep track of
anything until we need a list of assumptions in some function. The first time
this happens, we scan the function. After that, we add/remove @llvm.assume
calls from the cache in response to registration calls and ValueHandle
callbacks.
There are no new direct test cases for this pass, but because it calls it
validation function upon module finalization, we'll pick up detectable
inconsistencies from the other tests that touch @llvm.assume calls.
This pass will be used by follow-up commits that make use of @llvm.assume.
llvm-svn: 217334
support for MOVDDUP which is really important for matrix multiply style
operations that do lots of non-vector-aligned load and splats.
The original motivation was to add support for MOVDDUP as the lack of it
regresses matmul_f64_4x4 by 5% or so. However, all of the rules here
were somewhat suspicious.
First, we should always be using the floating point domain shuffles,
regardless of how many copies we have to make as a movapd is *crazy*
faster than the domain switching cost on some chips. (Mostly because
movapd is crazy cheap.) Because SHUFPD can't do the copy-for-free trick
of the PSHUF instructions, there is no need to avoid canonicalizing on
UNPCK variants, so do that canonicalizing. This also ensures we have the
chance to form MOVDDUP. =]
Second, we assume SSE2 support when doing any vector lowering, and given
that we should just use UNPCKLPD and UNPCKHPD as they can operate on
registers or memory. If vectors get spilled or come from memory at all
this is going to allow the load to be folded into the operation. If we
want to optimize for encoding size (the only difference, and only
a 2 byte difference) it should be done *much* later, likely after RA.
llvm-svn: 217332
Instead of aligning and moving the CurPtr forward, and then comparing
with End, simply calculate how much space is needed, and compare that
to how much is available.
Hopefully this avoids any doubts about comparing addresses possibly
derived from past the end of the slab array, overflowing, etc.
Also add a test where aligning CurPtr would move it past End.
llvm-svn: 217330
field of RelocationValueRef, rather than the 'Addend' field.
This is consistent with RuntimeDyldELF's use of RelocationValueRef, and more
consistent with the semantics of the data being stored (the offset from the
start of a section or symbol).
llvm-svn: 217328
DWARF address ranges contain a reference to the debug_info section. This offset
is an absolute relocation except on non-PE/COFF targets where it is section
relative. We would emit this incorrectly, and trying to map the debug info from
the address would fail.
llvm-svn: 217317
parsing (and latent bug in the instruction definitions).
This is effectively a revert of r136287 which tried to address
a specific and narrow case of immediate operands failing to be accepted
by x86 instructions with a pretty heavy hammer: it introduced a new kind
of operand that behaved differently. All of that is removed with this
commit, but the test cases are both preserved and enhanced.
The core problem that r136287 and this commit are trying to handle is
that gas accepts both of the following instructions:
insertps $192, %xmm0, %xmm1
insertps $-64, %xmm0, %xmm1
These will encode to the same byte sequence, with the immediate
occupying an 8-bit entry. The first form was fixed by r136287 but that
broke the prior handling of the second form! =[ Ironically, we would
still emit the second form in some cases and then be unable to
re-assemble the output.
The reason why the first instruction failed to be handled is because
prior to r136287 the operands ere marked 'i32i8imm' which forces them to
be sign-extenable. Clearly, that won't work for 192 in a single byte.
However, making thim zero-extended or "unsigned" doesn't really address
the core issue either because it breaks negative immediates. The correct
fix is to make these operands 'i8imm' reflecting that they can be either
signed or unsigned but must be 8-bit immediates. This patch backs out
r136287 and then changes those places as well as some others to use
'i8imm' rather than one of the extended variants.
Naturally, this broke something else. The custom DAG nodes had to be
updated to have a much more accurate type constraint of an i8 node, and
a bunch of Pat immediates needed to be specified as i8 values.
The fallout didn't end there though. We also then ceased to be able to
match the instruction-specific intrinsics to the instructions so
modified. Digging, this is because they too used i32 rather than i8 in
their signature. So I've also switched those intrinsics to i8 arguments
in line with the instructions.
In order to make the intrinsic adjustments of course, I also had to add
auto upgrading for the intrinsics.
I suspect that the intrinsic argument types may have led everything down
this rabbit hole. Pretty happy with the result.
llvm-svn: 217310
The finalizeObject method calls generateCodeForModule on each of the currently
'added' objects, but generateCodeForModule moves objects out of the 'added'
set as it's called. To avoid iterator invalidation issues, the added set is
copied out before any calls to generateCodeForModule.
This should fix http://llvm.org/PR20851 .
llvm-svn: 217291
computation was totally wrong, but somehow it didn't really show up with
llc.
I've added an assert that triggers on multiple existing test cases and
updated one of them to show the correct value.
There appear to still be more bugs lurking around insertps's mask. =/
However, note that this only really impacts the new vector shuffle
lowering.
llvm-svn: 217289
follows '~' in a clobber constraint string.
Previously llc would hit an llvm_unreachable when compiling an inline-asm
instruction with malformed constraint string "~x{21}". This commit enables
LLParser to catch the error earlier and print a more helpful diagnostic.
rdar://problem/14206559
llvm-svn: 217288
This problem is bigger than just fsub, but this is the minimum fix to solve
fneg for PR20556 ( http://llvm.org/bugs/show_bug.cgi?id=20556 ), and we solve
zero subtraction with the same change.
llvm-svn: 217286
When linking llvm.global_ctors with the optional third element we have to handle
it specially and only copy the elements whose keys were also copied.
llvm-svn: 217281
Summary:
Until r216870 LLVMCreateObjectFile returned nullptr in case of an error,
so callers could check if the call was successful. Now, it always
returns an OwningBinary wrapped as an LLVMObjectFileRef, so callers
can't check if the call was successul.
This results in a segfault running e.g.
llvm-c-test --object-list-sections < /dev/null
So the old behaviour should be restored.
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D5143
llvm-svn: 217279
This reverts commit r217211.
Both the bfd ld and gold outputs were valid. They were using a Rela relocation,
so the value present in the relocated location was not used, which caused me
to misread the output.
llvm-svn: 217264
Fixes PR20523.
When spilling variables onto the stack, spillVirtReg() is setting the
parent pointer of the cloned DBG_VALUE intrinsic for the stack location
to the parent pointer of the original intrinsic. MachineInstr parent
pointers should however always point to the parent basic block.
MBB is shadowing the MBB member variable. The instruction still ends up
being inserted into the right basic block, because it's inserted after MI
which serves as the iterator.
I failed at constructing a reliable testcase for this, see
http://llvm.org/bugs/show_bug.cgi?id=20523 for a large testcases.
llvm-svn: 217260
Summary: Found a couple of cases where unsigned was still being used. These two should be the last ones in the (entire) Mips backend.
Reviewers: dsanders
Reviewed By: dsanders
Differential Revision: http://reviews.llvm.org/D5028
llvm-svn: 217257
Summary: Use the naming convention from the LLVM Coding Standards.
Reviewers: dsanders
Reviewed By: dsanders
Differential Revision: http://reviews.llvm.org/D4972
llvm-svn: 217254
We must constrain the destination register class of legalized operands
to a VGPR class or else the illegal operand may be folded back into
the instruction by the register coalescer.
This fixes a bug in add.ll that will be uncovered by future commits.
llvm-svn: 217249
shuffle lowering for integer vectors and share it from v4i32, v8i16, and
v16i8 code paths.
Ironically, the SSE2 v16i8 code for this is now better than the SSSE3!
=] Will have to fix the SSSE3 code next to just using a single pshufb.
llvm-svn: 217240