This patch implements the first frontend action for the Flang parser (i.e.
Fortran::parser). This action runs the preprocessor and is invoked with the
`-E` flag. (i.e. `flang-new -E <input-file>). The generated output is printed
to either stdout or the output file (specified with `-` or `-o <output-file>`).
Note that currently there is no mechanism to map options for the
frontend driver (i.e. Fortran::frontend::FrontendOptions) to options for
the parser (i.e. Fortran::parser::Options). Instead,
Frotran::parser::options are hard-coded to:
```
std::vector<std::string> searchDirectories{"."s};
searchDirectories = searchDirectories;
isFixedForm = false;
_encoding(Fortran::parser::Encoding::UTF_8);
```
These default settings are compatible with the current Flang driver. Further
work is required in order for CompilerInvocation to read and map
clang::driver::options to Fortran::parser::options.
Co-authored-by: Andrzej Warzynski <andrzej.warzynski@arm.com>
Differential Revision: https://reviews.llvm.org/D88381
As per point 3 in [1]:
```
Accessor member functions are named with the non-public data member's
name, less the trailing underscore. Mutator member functions are named
set_...
```
Originally we just followed the LLVM's style, which is incompatible with
Flang. This patch renames the accessors and mutators accordingly.
`getDiagnostics` and `GetDiagnostics` are replaced with one accessor:
`diagnostics`. `SetDiagnostics` was neither implemented nor used, so
it's deleted.
[1] https://github.com/llvm/llvm-project/blob/master/flang/docs/C++style.md#naming
Differential Revision: https://reviews.llvm.org/D90300
This patch introduces the dependencies required to read and manage input files
provided by the command line option. It also adds the infrastructure to create
and write to output files. The output is sent to either stdout or a file
(specified with the `-o` flag).
Separately, in order to be able to test the code for file I/O, it adds
infrastructure to create frontend actions. As a basic testable example, it adds
the `InputOutputTest` FrontendAction. The sole purpose of this action is to
read a file from the command line and print it either to stdout or the output
file. This action is run by using the `-test-io` flag also introduced in this
patch (available for `flang-new` and `flang-new -fc1`). With this patch:
```
flang-new -test-io input-file.f90
```
will read input-file.f90 and print it in the output file.
The `InputOutputTest` frontend action has been introduced primarily to
facilitate testing. It is hidden from users (i.e. it's only displayed with
`--help-hidden`). Currently Clang doesn’t have an equivalent action.
`-test-io` is used to trigger the InputOutputTest action in the Flang frontend
driver. This patch makes sure that “flang-new” forwards it to “flang-new -fc1"
by creating a preprocessor job. However, in Flang.cpp, `-test-io` is passed to
“flang-new -fc1” without `-E`. This way we make sure that the preprocessor is
_not_ run in the frontend driver. This is the desired behaviour: `-test-io`
should only read the input file and print it to the output stream.
co-authored-by: Andrzej Warzynski <andrzej.warzynski@arm.com>
Differential Revision: https://reviews.llvm.org/D87989
As usual, it's difficult to handle all different configuration in the first row,
but this one has been extensively tested
Differential Revision: https://reviews.llvm.org/D89452
- Rework the host runtime table so that it is constexpr to avoid
having to construct it and to store/propagate it.
- Make the interface simpler (remove many templates and a file)
- Enable 16bits float folding using 32bits float host runtime
- Move StaticMultimapView into its own header to use it for host
folding
Reviewed By: klausler, PeteSteinfeld
Differential Revision: https://reviews.llvm.org/D88981
Harmonize usage of LLVM components througout Flang.
Explicit LLVM Libs where used across several CMakeFIles, which led to
incompatibilities with LLVM shlibs.
Fortunately, the LLVM component system can be relied on to harmoniously handle
both cases.
Differential Revision: https://reviews.llvm.org/D87893
The sign of the scaling factor was misinterpreted for output
as meaning what it does for input. To be correct, they
should cancel each other out.
print '(1P,F4.3)', 1. ! printed 0.1 but should print 10.0
Differential revision: https://reviews.llvm.org/D88610
Currently Flang uses TextDiagnostic, TextDiagnosticPrinter &
TestDiagnosticBuffer classes from Clang (more specifically, from
libclangFrontend). This patch introduces simplified equivalents of these
classes in Flang (i.e. it removes the dependency on libclangFrontend).
Flang only needs these diagnostics classes for the compiler driver
diagnostics. This is unlike in Clang in which similar diagnostic classes
are used for e.g. Lexing/Parsing/Sema diagnostics. For this reason, the
implementations introduced here are relatively basic. We can extend them
in the future if this is required.
This patch also enhances how the diagnostics are printed. In particular,
this is the diagnostic that you'd get _before_ the changes introduced here
(no text formatting):
```
$ bin/flang-new
error: no input files
```
This is the diagnostic that you get _after_ the changes introduced here
(in terminals that support it, the text is formatted - bold + red):
```
$ bin/flang-new
flang-new: error: no input files
```
Tests are updated accordingly and options related to enabling/disabling
color diagnostics are flagged as supported by Flang.
Reviewed By: sameeranjoshi, CarolineConcatto
Differential Revision: https://reviews.llvm.org/D87774
These types have to distinguish list-directed I/O from formatted I/O,
and the subscript incrementation call was in the formatted branch
of the if() rather than after the if().
Differential revision: https://reviews.llvm.org/D88606
`FlangFrontendTests` depends on libclangFrontend (it uses
DiagnosticConsumer classes from there). This patch adds the missing
dependency in CMake.
The missing dependency manifests itself only with BUILD_SHARED_LIBS=ON.
This symbol is linked in statically with libflangFrontend when
BUILD_SHARED_LIBS=OFF.
These tests aren't adding much value and consensus has been reached for
there removal.
For more context, please refer to discussion in this revision:
https://reviews.llvm.org/D87846
The Fortran standard discusses BZ mode (treat blanks as zero digits)
explicitly in its effect on the editing of the digits prior to the
exponent part, but doesn't mention it in description of the
exponent part. Other compilers honor BZ mode in the exponent,
so we should do so too. So "1 e 1 " is 1.E11 in BZ mode.
Differential Revision: https://reviews.llvm.org/D87653
The std::string holding the content of a CookedSource no longer
needs to be exposed in its API after the recent work that allows
the parsing context to hold multiple instances of a CookedSource.
So clean the API. These changes were extracted from some work in
progress that was made easier by the API changes.
Differential Revision: https://reviews.llvm.org/D87635
Summary:
This is the first patch implementing the new Flang driver as outlined in [1],
[2] & [3]. It creates Flang driver (`flang-new`) and Flang frontend driver
(`flang-new -fc1`). These will be renamed as `flang` and `flang -fc1` once the
current Flang throwaway driver, `flang`, can be replaced with `flang-new`.
Currently only 2 options are supported: `-help` and `--version`.
`flang-new` is implemented in terms of libclangDriver, defaulting the driver
mode to `FlangMode` (added to libclangDriver in [4]). This ensures that the
driver runs in Flang mode regardless of the name of the binary inferred from
argv[0].
The design of the new Flang compiler and frontend drivers is inspired by it
counterparts in Clang [3]. Currently, the new Flang compiler and frontend
drivers re-use Clang libraries: clangBasic, clangDriver and clangFrontend.
To identify Flang options, this patch adds FlangOption/FC1Option enums.
Driver::printHelp is updated so that `flang-new` prints only Flang options.
The new Flang driver is disabled by default. To enable it, set
`-DBUILD_FLANG_NEW_DRIVER=ON` when configuring CMake and add clang to
`LLVM_ENABLE_PROJECTS` (e.g. -DLLVM_ENABLE_PROJECTS=“clang;flang;mlir”).
[1] “RFC: new Flang driver - next steps”
http://lists.llvm.org/pipermail/flang-dev/2020-July/000470.html
[2] “RFC: Adding a fortran mode to the clang driver for flang”
http://lists.llvm.org/pipermail/cfe-dev/2019-June/062669.html
[3] “RFC: refactoring libclangDriver/libclangFrontend to share with Flang”
http://lists.llvm.org/pipermail/cfe-dev/2020-July/066393.html
[4] https://reviews.llvm.org/rG6bf55804924d5a1d902925ad080b1a2b57c5c75c
co-authored-by: Andrzej Warzynski <andrzej.warzynski@arm.com>
Reviewed By: richard.barton.arm, sameeranjoshi
Differential Revision: https://reviews.llvm.org/D86089
These are owned by an instance of a new class AllCookedSources.
This removes the need for a Scope to own a string containing
a module's cooked source stream, and will enable errors to be
emitted when parsing module files in the future.
Differential Revision: https://reviews.llvm.org/D86891
This changes the behavior of constructing MLIRContext to no longer load globally registered dialects on construction. Instead Dialects are only loaded explicitly on demand:
- the Parser is lazily loading Dialects in the context as it encounters them during parsing. This is the only purpose for registering dialects and not load them in the context.
- Passes are expected to declare the dialects they will create entity from (Operations, Attributes, or Types), and the PassManager is loading Dialects into the Context when starting a pipeline.
This changes simplifies the configuration of the registration: a compiler only need to load the dialect for the IR it will emit, and the optimizer is self-contained and load the required Dialects. For example in the Toy tutorial, the compiler only needs to load the Toy dialect in the Context, all the others (linalg, affine, std, LLVM, ...) are automatically loaded depending on the optimization pipeline enabled.
Differential Revision: https://reviews.llvm.org/D85622
This changes the behavior of constructing MLIRContext to no longer load globally registered dialects on construction. Instead Dialects are only loaded explicitly on demand:
- the Parser is lazily loading Dialects in the context as it encounters them during parsing. This is the only purpose for registering dialects and not load them in the context.
- Passes are expected to declare the dialects they will create entity from (Operations, Attributes, or Types), and the PassManager is loading Dialects into the Context when starting a pipeline.
This changes simplifies the configuration of the registration: a compiler only need to load the dialect for the IR it will emit, and the optimizer is self-contained and load the required Dialects. For example in the Toy tutorial, the compiler only needs to load the Toy dialect in the Context, all the others (linalg, affine, std, LLVM, ...) are automatically loaded depending on the optimization pipeline enabled.
This patch lower `!OMP PARALLEL` construct from PFT to OpenMPDialect operations.
This is first patch in this direction(lowering parallel construct).
OpenMP parallel construct can have multiple clauses and parameters. This patch
only implements lowering of an empty(contains no code in body) parallel construct
without any clauses or parameters.
Patch is carved out of following approved PR:
https://github.com/flang-compiler/f18-llvm-project/pull/322
Reviewed By: kiranchandramohan, DavidTruby
Differential Revision: https://reviews.llvm.org/D84965
The intrinsic lowering facility is based on the generic intrinsic names to avoid
duplicating implementations. Specific intrinsics call are re-written to call to
the generic versions by the front-end but this cannot be done when specific intrinsics
are passed as arguments (the rewrite would give illegal/ambiguous unparsed Fortran).
Solve the issue by making the specific to generic name mapping accessible to lowering
and can be later used to generate the unrestricted intrinsic functions.
Reviewed By: schweitz
Differential Revision: https://reviews.llvm.org/D84842
A comma is not required between a scale factor and a following
data edit descriptor (C1302).
Reviewed By: PeteSteinfeld
Differential Revision: https://reviews.llvm.org/D84369
Summary:
As a corrollary, these tests are now run as part of the check-flang
target.
Reviewers: sscalpone
Subscribers: mgorny, delcypher, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D83946
It turns out that COMPLEX formatted input needs its own runtime APIs
so that null values in list-directed input skip the entire COMPLEX
datum rather than just a real or imaginary part thereof.
Reviewed By: sscalpone
Differential Revision: https://reviews.llvm.org/D84370
add_compile_options is more sensitive to its location in the file than add_definitions--it only takes effect for sources that are added after it. This updated patch ensures that the add_compile_options is done before adding any source files that depend on it.
Using add_definitions caused the flag to be passed to rc.exe on Windows and thus broke Windows builds.
After lots of follow-up fixes, there are still problems, such as
-Wno-suggest-override getting passed to the Windows Resource Compiler
because it was added with add_definitions in the CMake file.
Rather than piling on another fix, let's revert so this can be re-landed
when there's a proper fix.
This reverts commit 21c0b4c1e8.
This reverts commit 81d68ad27b.
This reverts commit a361aa5249.
This reverts commit fa42b7cf29.
This reverts commit 955f87f947.
This reverts commit 8b16e45f66.
This reverts commit 308a127a38.
This reverts commit 274b6b0c7a.
This reverts commit 1c7037a2a5.
When FORMAT control reaches the final parenthesis and data items
remain, we advance a record and revert to the beginning of the
FORMAT for further items. But when the FORMAT contains any
nested parenthesized group of editing descriptors, possibly
repeated, reversion must be to the beginning of the last such
top-level parenthesized group, including its repetition count.
Reviewed By: sscalpone, PeteSteinfeld
Differential Revision: https://reviews.llvm.org/D84281
Add SetConvert() to the OPEN statement's runtime API.
Add ByteswapOption() to the main program's runtime API.
Check a $FORT_CONVERT environment variable, too, for
a swapping specifier.
Reviewed By: sscalpone
Differential Revision: https://reviews.llvm.org/D84284
Allow repeated nulls in list-directed input (e.g., "4*,") and
ignore excess characters in list-directed LOGICAL input after the
T or F.
Fixes FCVS test fm923.f.
Reviewed By: sscalpone
Differential Revision: https://reviews.llvm.org/D83810
Fix fronted shared library builds by eliminating dependences of
the parser on other component libraries, moving some code around that
wasn't in the right library, and making some dependences
explicit in the CMakeLists.txt files. The lowering library
does not yet build as a shared library due to some undefined
names.
Reviewed By: tskeith
Differential Revision: https://reviews.llvm.org/D83515
I added 'num_images()' to the list of functions that are evaluated as intrinsic. I also added a test file in flang/test/Semantics to test calls to 'num_images()'. There was a call to 'num_images()' in flang/test/Semantics/call10.f90 that expected an error, now it no longer produces an error. So I edited that file accordingly. I also edited the intrinsics unit test to add further testing of 'num_images()'.
Differential Revision: https://reviews.llvm.org/D83142
Add new unit tests for external Fortran I/O that drive the
Fortran I/O runtime API from C++ and exercise basic writing
and read-back in the various combinations of access modes,
record length variability, and formatting. Sequential modes
are tested with positioning. More thorough tests written in
Fortran will follow when they can be compiled and run.
The Fortran runtime's error termination callback registration
was extended with source file and line number positions for
better failure messages in unit testing.
Reviewed By: sscalpone
Differential Revision: https://reviews.llvm.org/D83164
Fix F output editing in the Fortran runtime so that it
respects the 'd' count of digits after the decimal mark.
Reviewed By: tskeith
Differential Revision: https://reviews.llvm.org/D82242
This upstreams the internal name mangling used in the bridge to generate
unique names from symbols.
Replace InternalNamesTest with the actual, functional unittest.
Differential revision: https://reviews.llvm.org/D81764
Summary:
The only difference is that LLVM_ENABLE_WERROR is set to OFF
by default, but we enable this in a standalone flang build
This commit fixes some windows issues with the flags
Reviewers: DavidTruby, jdoerfert, sscalpone
Reviewed By: DavidTruby, sscalpone
Subscribers: ormris, richard.barton.arm, mehdi_amini, Meinersbur, ChinouneMehdi, tskeith, mgorny, llvm-commits
Tags: #llvm, #flang
Differential Revision: https://reviews.llvm.org/D78306
When I tried Solaris builds with `-DBUILD_SHARED_LIBS=ON`, some commands failed
to link:
[ 94%] Linking CXX executable ../../../../bin/f18
Undefined first referenced
symbol in file
Fortran::common::IntrinsicTypeDefaultKinds::set_sizeIntegerKind(int) CMakeFiles/f18.dir/f18.cpp.o (symbol belongs to implicit dependency /var/llvm/local-amd64-release-shared-gcc8-make/lib/libFortranCommon.so.11git)
Fortran::common::IntrinsicTypeDefaultKinds::set_subscriptIntegerKind(int) CMakeFiles/f18.dir/f18.cpp.o (symbol belongs to implicit dependency /var/llvm/local-amd64-release-shared-gcc8-make/lib/libFortranCommon.so.11git)
Fortran::common::EnumIndexToString[abi:cxx11](int, char const*) CMakeFiles/f18.dir/f18.cpp.o (symbol belongs to implicit dependency /var/llvm/local-amd64-release-shared-gcc8-make/lib/libFortranCommon.so.11git)
Fortran::common::IntrinsicTypeDefaultKinds::set_defaultIntegerKind(int) CMakeFiles/f18.dir/f18.cpp.o (symbol belongs to implicit dependency /var/llvm/local-amd64-release-shared-gcc8-make/lib/libFortranCommon.so.11git)
Fortran::common::IntrinsicTypeDefaultKinds::IntrinsicTypeDefaultKinds() CMakeFiles/f18.dir/f18.cpp.o (symbol belongs to implicit dependency /var/llvm/local-amd64-release-shared-gcc8-make/lib/libFortranCommon.so.11git)
Fortran::common::IntrinsicTypeDefaultKinds::set_defaultRealKind(int) CMakeFiles/f18.dir/f18.cpp.o (symbol belongs to implicit dependency /var/llvm/local-amd64-release-shared-gcc8-make/lib/libFortranCommon.so.11git)
ld: fatal: symbol referencing errors
This patch fixes this by adding explicit dependencies on `libFortranCommon`
to the affected commands.
Tested on `amd64-pc-solaris2.11`, `sparcv9-sun-solaris2.11`, and
`x86-64-pc-linux-gnu`.
Differential Revision: https://reviews.llvm.org/D78761