Summary:
This patch attempts to fix the undefined behavior in __tree by changing the node pointer types used throughout. The pointer types are changed for raw pointers in the current ABI and for fancy pointers in ABI V2 (since the fancy pointer types may not be ABI compatible).
The UB in `__tree` arises because tree downcasts the embedded end node and then deferences that pointer. Currently there are 3 node types in __tree.
* `__tree_end_node` which contains the `__left_` pointer. This node is embedded within the container.
* `__tree_node_base` which contains `__right_`, `__parent_` and `__is_black`. This node is used throughout the tree rebalancing algorithms.
* `__tree_node` which contains `__value_`.
Currently `__tree` stores the start of the tree, `__begin_node_`, as a pointer to a `__tree_node`. Additionally the iterators store their position as a pointer to a `__tree_node`. In both of these cases the pointee can be the end node. This is fixed by changing them to store `__tree_end_node` pointers instead.
To make this change I introduced an `__iter_pointer` typedef which is defined to be a pointer to either `__tree_end_node` in the new ABI or `__tree_node` in the current one.
Both `__tree::__begin_node_` and iterator pointers are now stored as `__iter_pointers`.
The other situation where `__tree_end_node` is stored as the wrong type is in `__tree_node_base::__parent_`. Currently `__left_`, `__right_`, and `__parent_` are all `__tree_node_base` pointers. Since the end node will only be stored in `__parent_` the fix is to change `__parent_` to be a pointer to `__tree_end_node`.
To make this change I introduced a `__parent_pointer` typedef which is defined to be a pointer to either `__tree_end_node` in the new ABI or `__tree_node_base` in the current one.
Note that in the new ABI `__iter_pointer` and `__parent_pointer` are the same type (but not in the old one). The confusion between these two types is unfortunate but it was the best solution I could come up with that maintains the ABI.
The typedef changes force a ton of explicit type casts to correct pointer types and to make current code compatible with both the old and new pointer typedefs. This is the bulk of the change and it's really messy. Unfortunately I don't know how to avoid it.
Please let me know what you think.
Reviewers: howard.hinnant, mclow.lists
Subscribers: howard.hinnant, bbannier, cfe-commits
Differential Revision: https://reviews.llvm.org/D20786
llvm-svn: 276003
Quite a few libcxx tests seem to follow the format:
#if _LIBCPP_STD_VER > X
// Do test.
#else
// Empty test.
#endif
We should instead use the UNSUPPORTED lit directive to exclude the test on
earlier C++ standards. This gives us a more accurate number of test passes
for those standards and avoids unnecessary conflicts with other lit
directives on the same tests.
Reviewers: bcraig, ericwf, mclow.lists
Differential revision: http://reviews.llvm.org/D20730
llvm-svn: 271108
This patch does the following:
* Remove <__config> includes from some container tests.
* Guards uses of std::launch::any in async tests because it's an extension.
* Move "test/std/extensions" to "test/libcxx/extensions"
* Moves various non-standard tests including those in "sequences/vector",
"std/localization" and "utilities/meta".
llvm-svn: 267981
In cases where emplace is called with two arguments and the first one
matches the key_type we can Key to check for duplicates before allocating.
This patch expands on work done by dexonsmith@apple.com.
llvm-svn: 266498
map's allocator may only be used to construct objects of 'value_type',
or in this case 'pair<const Key, Value>'. In order to respect this requirement
in operator[], which requires default constructing the 'mapped_type', we have
to use pair's piecewise constructor with '(tuple<Kep>, tuple<>)'.
Unfortunately we still need to provide a fallback implementation for C++03
since we don't have <tuple>. Even worse this fallback is the last remaining
user of '__hash_map_node_destructor' and '__construct_node_with_key'.
This patch also switches try_emplace over to __tree.__emplace_unique_key_args.
llvm-svn: 264989
This patch is fairly large and contains a number of changes. The changes all work towards
allowing __tree to properly handle __value_type esspecially when inserting into the __tree.
I chose not to break this change into smaller patches because it wouldn't be possible to
write meaningful standard-compliant tests for each patch.
It is very similar to r260513 "[libcxx] Teach __hash_table how to handle unordered_map's __hash_value_type".
Changes in <map>
* Remove __value_type's constructors because it should never be constructed directly.
* Make map::emplace and multimap::emplace forward to __tree and remove the old definitions
* Remove "__construct_node" map and multimap member functions. Almost all of the construction is done within __tree.
* Fix map's move constructor to access "__value_type.__nc" directly and pass this object to __tree::insert.
Changes in <__tree>
* Add traits to detect, handle, and unwrap, map's "__value_type".
* Convert methods taking "value_type" to take "__container_value_type" instead. Previously these methods caused
unwanted implicit conversions from "std::pair<Key, Value>" to "__value_type<Key, Value>".
* Delete __tree_node and __tree_node_base's constructors and assignment operators. The node types should never be constructed
because the "__value_" member of __tree_node must be constructed directly by the allocator.
* Make the __tree_node_destructor class and "__construct_node" methods unwrap "__node_value_type" into "__container_value_type" before invoking the allocator. The user's allocator can only be used to construct and destroy the container's value_type. Passing it map's "__value_type" was incorrect.
* Cleanup the "__insert" and "__emplace" methods. Have __insert forward to an __emplace function wherever possible to reduce
code duplication. __insert_unique(value_type const&) and __insert_unique(value_type&&) forward to __emplace_unique_key_args.
These functions will not allocate a new node if the value is already in the tree.
* Change the __find* functions to take the "key_type" directly instead of passing in "value_type" and unwrapping the key later.
This change allows the find functions to be used without having to construct a "value_type" first. This allows for a number
of optimizations.
* Teach __move_assign and __assign_multi methods to unwrap map's __value_type.
llvm-svn: 264986
unordered_set::emplace and unordered_map::emplace construct a node, then
try to insert it. If insertion fails, the node gets deleted.
To avoid this unnecessary malloc traffic, check to see if the argument
to emplace has the appropriate key_type. If so, we can use that key
directly and delay the malloc until we're sure we're inserting something
new.
Test updates by Eric Fiselier, who rewrote the old allocation tests to
include the new cases.
There are two orthogonal future directions:
1. Apply the same optimization to set and map.
2. Extend the optimization to when the argument is not key_type, but can
be converted to it without side effects. Ideally, we could do this
whenever key_type is trivially destructible and the argument is
trivially convertible to key_type, but in practise the relevant type
traits "blow up sometimes". At least, we should catch a few simple
cases (such as when both are primitive types).
llvm-svn: 263746