and stores capture) to permit the caller to see each capture point and decide
whether to continue looking.
Use this inside memdep to do an analysis that basicaa won't do. This lets us
solve another devirtualization case, fixing PR8908!
llvm-svn: 144580
The limit in this patch is probably too high, but it is enough to stop DSE from going completely insane on a testcase I have (which has a single block with around 50,000 non-aliasing stores in it).
rdar://9471075
llvm-svn: 133111
redundant with partially-aliasing loads.
When computing what portion of a clobbering load value is needed,
it doesn't consider phi-translation which may have occurred
between the clobbing load and the redundant load.
llvm-svn: 132631
In the given testcase, the "Clobber" was pointing to a load, and GVN was incorrectly assuming that meant that the "Clobber" load overlapped the load being analyzed (when they are actually unrelated).
The included testcase tests both this commit and r132434.
Part two of rdar://9429882. (r132434 was mislabeled.)
llvm-svn: 132442
wider load would allow elimination of subsequent loads, and when the wider
load is still a native integer type. This eliminates a ton of loads on
various benchmarks involving struct fields, though it is somewhat hobbled
by clang not being very aggressive about field alignment.
This is yet another step along the way towards resolving PR6627.
llvm-svn: 130390
an earlier load could be widened to encompass a later load. For example,
if we see:
X = load i8* P, align 4
Y = load i8* (P+3), align 1
and we have a 32-bit native integer type, we can widen the former load
to i32 which then makes the second load redundant. GVN can't actually
do anything with this load/load relation yet, so this isn't testable, but
it is the next step to resolving PR6627, and a fairly general class of
"merge neighboring loads" missed optimizations.
llvm-svn: 130250
return it as a clobber. This allows GVN to do smart things.
Enhance GVN to be smart about the case when a small load is clobbered
by a larger overlapping load. In this case, forward the value. This
allows us to compile stuff like this:
int test(void *P) {
int tmp = *(unsigned int*)P;
return tmp+*((unsigned char*)P+1);
}
into:
_test: ## @test
movl (%rdi), %ecx
movzbl %ch, %eax
addl %ecx, %eax
ret
which has one load. We already handled the case where the smaller
load was from a must-aliased base pointer.
llvm-svn: 130180
with BasicAA's DecomposeGEPExpression, which recently began
using a TargetData. This fixes PR8968, though the testcase
is awkward to reduce.
Also, update several off GetUnderlyingObject's users
which happen to have a TargetData handy to pass it in.
llvm-svn: 124134
references. For example, this allows gvn to eliminate the load in
this example:
void foo(int n, int* p, int *q) {
p[0] = 0;
p[1] = 1;
if (n) {
*q = p[0];
}
}
llvm-svn: 118714
must be called in the pass's constructor. This function uses static dependency declarations to recursively initialize
the pass's dependencies.
Clients that only create passes through the createFooPass() APIs will require no changes. Clients that want to use the
CommandLine options for passes will need to manually call the appropriate initialization functions in PassInitialization.h
before parsing commandline arguments.
I have tested this with all standard configurations of clang and llvm-gcc on Darwin. It is possible that there are problems
with the static dependencies that will only be visible with non-standard options. If you encounter any crash in pass
registration/creation, please send the testcase to me directly.
llvm-svn: 116820
perform initialization without static constructors AND without explicit initialization
by the client. For the moment, passes are required to initialize both their
(potential) dependencies and any passes they preserve. I hope to be able to relax
the latter requirement in the future.
llvm-svn: 116334
response from getModRefInfo is not useful here. Instead, check for identical
calls only in the NoModRef case.
Reapply r110270, and strengthen it to compensate for the memdep changes.
When both calls are readonly, there is no dependence between them.
llvm-svn: 110382
with a fix for self-hosting
rotate CallInst operands, i.e. move callee to the back
of the operand array
the motivation for this patch are laid out in my mail to llvm-commits:
more efficient access to operands and callee, faster callgraph-construction,
smaller compiler binary
llvm-svn: 101465
with a fix
rotate CallInst operands, i.e. move callee to the back
of the operand array
the motivation for this patch are laid out in my mail to llvm-commits:
more efficient access to operands and callee, faster callgraph-construction,
smaller compiler binary
llvm-svn: 101397
of the operand array
the motivation for this patch are laid out in my mail to llvm-commits:
more efficient access to operands and callee, faster callgraph-construction,
smaller compiler binary
llvm-svn: 101364
argument is non-null, pass it along to PHITranslateSubExpr so that it can
prefer using existing values that dominate the PredBB, instead of just
blindly picking the first equivalent value that it finds on a uselist.
Also when the DominatorTree is specified, have PHITranslateValue filter
out any result that does not dominate the PredBB. This is basically just
refactoring the check that used to be in GetAvailablePHITranslatedSubExpr
and also in GVN.
Despite my initial expectations, this change does not affect the results
of GVN for any testcases that I could find, but it should help compile time.
Before this change, if PHITranslateSubExpr picked a value that does not
dominate, PHITranslateWithInsertion would then insert a new value, which GVN
would later determine to be redundant and would replace. By picking a good
value to begin with, we save GVN the extra work of inserting and then
replacing a new value.
llvm-svn: 97010
instead of stored. This reduces memdep memory usage, and also eliminates a bunch of
weakvh's. This speeds up gvn on gcc.c-torture/20001226-1.c from 23.9s to 8.45s (2.8x)
on a different machine than earlier.
llvm-svn: 91885
cache a pointer as being unavailable due to phi trans in the
wrong place. This would cause later queries to fail even when
they didn't involve phi trans.
llvm-svn: 91787
phi translation of complex expressions like &A[i+1]. This has the
following benefits:
1. The phi translation logic is all contained in its own class with
a strong interface and verification that it is self consistent.
2. The logic is more correct than before. Previously, if intermediate
expressions got PHI translated, we'd miss the update and scan for
the wrong pointers in predecessor blocks. @phi_trans2 is a testcase
for this.
3. We have a lot less code in memdep.
We can handle phi translation across blocks of things like @phi_trans3,
which is pretty insane :).
This patch should fix the miscompiles of 255.vortex, and I tested it
with a bootstrap of llvm-gcc, llvm-test and dejagnu of course.
llvm-svn: 90926
was being added to the Result vector, but not being put in the
cache. This means that if the cache was reused wholesale for a
later query that it would be missing this entry and we'd do an
incorrect load elimination.
Unfortunately, it's not really possible to write a useful
testcase for this, but this unbreaks 255.vortex.
llvm-svn: 90093
if we don't have an address expression available in a predecessor,
then model this as the value being clobbered at the end of the pred
block instead of being modeled as a complete phi translation failure.
This is important for PRE of loads because we want to see that the
load is available in all but this predecessor, and complete phi
translation failure results in not getting any information about
predecessors.
This doesn't do anything until I renable code insertion since PRE
now sees that it is available in all but one predecessors, but can't
insert the addressing in the predecessor that is missing it to
eliminate the redundancy.
llvm-svn: 90037
translation of add with immediate. This allows us
to optimize this function:
void test(int N, double* G) {
long j;
G[1] = 1;
for (j = 1; j < N - 1; j++)
G[j+1] = G[j] + G[j+1];
}
to only do one load every iteration of the loop.
llvm-svn: 90013
Update all analysis passes and transforms to treat free calls just like FreeInst.
Remove RaiseAllocations and all its tests since FreeInst no longer needs to be raised.
llvm-svn: 84987
so that all code paths get it. PR4256 was about a case where the
phi translation loop would find all preds in the Visited cache, so
it could get by without re-sorting the NonLocalPointerDeps cache.
Fix this by resorting it earlier, there is no reason not to do this.
This patch inspired by Jakub Staszak's patch.
llvm-svn: 75476
This avoids using a dangling pointer.
Reset NumSortedEntries after restoring Cache to avoid extraneous sorts.
This fixes the reduced sqlite3 testcase, but apparently not the whole app.
llvm-svn: 62838
analyses could be run without the caches properly sorted. This
can fix all sorts of weirdness. Many thanks to Bill for coming
up with the 'issorted' verification idea.
llvm-svn: 62757
visited set before they are used. If used, their blocks need to be
added to the visited set so that subsequent queries don't use conflicting
pointer values in the cache result blocks.
llvm-svn: 61080
memdep keeps track of how PHIs affect the pointer in dep queries, which
allows it to eliminate the load in cases like rle-phi-translate.ll, which
basically end up being:
BB1:
X = load P
br BB3
BB2:
Y = load Q
br BB3
BB3:
R = phi [P] [Q]
load R
turning "load R" into a phi of X/Y. In addition to additional exposed
opportunities, this makes memdep safe in many cases that it wasn't before
(which is required for load PRE) and also makes it substantially more
efficient. For example, consider:
bb1: // has many predecessors.
P = some_operator()
load P
In this example, previously memdep would scan all the predecessors of BB1
to see if they had something that would mustalias P. In some cases (e.g.
test/Transforms/GVN/rle-must-alias.ll) it would actually find them and end
up eliminating something. In many other cases though, it would scan and not
find anything useful. MemDep now stops at a block if the pointer is defined
in that block and cannot be phi translated to predecessors. This causes it
to miss the (rare) cases like rle-must-alias.ll, but makes it faster by not
scanning tons of stuff that is unlikely to be useful. For example, this
speeds up GVN as a whole from 3.928s to 2.448s (60%)!. IMO, scalar GVN
should be enhanced to simplify the rle-must-alias pointer base anyway, which
would allow the loads to be eliminated.
In the future, this should be enhanced to phi translate through geps and
bitcasts as well (as indicated by FIXMEs) making memdep even more powerful.
llvm-svn: 61022
of a pointer. This allows is to catch more equivalencies. For example,
the type_lists_compatible_p function used to require two iterations of
the gvn pass (!) to delete its 18 redundant loads because the first pass
would CSE all the addressing computation cruft, which would unblock the
second memdep/gvn passes from recognizing them. This change allows
memdep/gvn to catch all 18 when run just once on the function (as is
typical :) instead of just 3.
On all of 403.gcc, this bumps up the # reundandancies found from:
63 gvn - Number of instructions PRE'd
153991 gvn - Number of instructions deleted
50069 gvn - Number of loads deleted
to:
63 gvn - Number of instructions PRE'd
154137 gvn - Number of instructions deleted
50185 gvn - Number of loads deleted
+120 loads deleted isn't bad.
llvm-svn: 60799
tricks based on readnone/readonly functions.
Teach memdep to look past readonly calls when analyzing
deps for a readonly call. This allows elimination of a
few more calls from 403.gcc:
before:
63 gvn - Number of instructions PRE'd
153986 gvn - Number of instructions deleted
50069 gvn - Number of loads deleted
after:
63 gvn - Number of instructions PRE'd
153991 gvn - Number of instructions deleted
50069 gvn - Number of loads deleted
5 calls isn't much, but this adds plumbing for the next change.
llvm-svn: 60794
load dependence queries. This allows GVN to eliminate a few more
instructions on 403.gcc:
152598 gvn - Number of instructions deleted
49240 gvn - Number of loads deleted
after:
153986 gvn - Number of instructions deleted
50069 gvn - Number of loads deleted
llvm-svn: 60786
the first block of a query specially. This makes the "complete query
caching" subsystem more effective, avoiding predecessor queries. This
speeds up GVN another 4%.
llvm-svn: 60752
track of whether the CachedNonLocalPointerInfo for a block is specific
to a block. If so, just return it without any pred scanning. This is
good for a 6% speedup on GVN (when it uses this lookup method, which
it doesn't right now).
llvm-svn: 60695
method. This will eventually take over load/store dep
queries from getNonLocalDependency. For now it works
fine, but is incredibly slow because it does no caching.
Lets not switch GVN to use it until that is fixed :)
llvm-svn: 60649