[DebugInfo] Add debug locations to constant SD nodes
This adds debug location to constant nodes of Selection DAG and updates
all places that create constants to pass debug locations
(see PR13269).
Can't guarantee that all locations are correct, but in a lot of cases choice
is obvious, so most of them should be. At least all tests pass.
Tests for these changes do not cover everything, instead just check it for
SDNodes, ARM and AArch64 where it's easy to get incorrect locations on
constants.
This is not complete fix as FastISel contains workaround for wrong debug
locations, which drops locations from instructions on processing constants,
but there isn't currently a way to use debug locations from constants there
as llvm::Constant doesn't cache it (yet). Although this is a bit different
issue, not directly related to these changes.
Differential Revision: http://reviews.llvm.org/D9084
llvm-svn: 235989
This adds debug location to constant nodes of Selection DAG and updates
all places that create constants to pass debug locations
(see PR13269).
Can't guarantee that all locations are correct, but in a lot of cases choice
is obvious, so most of them should be. At least all tests pass.
Tests for these changes do not cover everything, instead just check it for
SDNodes, ARM and AArch64 where it's easy to get incorrect locations on
constants.
This is not complete fix as FastISel contains workaround for wrong debug
locations, which drops locations from instructions on processing constants,
but there isn't currently a way to use debug locations from constants there
as llvm::Constant doesn't cache it (yet). Although this is a bit different
issue, not directly related to these changes.
Differential Revision: http://reviews.llvm.org/D9084
llvm-svn: 235977
The ARMv8 ARMARM states that for these instructions in A64 state:
"Unspecified bits in "imm5" are ignored but should be set to zero by an assembler.", (imm4 for INS).
Make the disassembler accept any encoding with these ignored bits set to 1.
llvm-svn: 234896
The A64 instruction set includes a generic register syntax for accessing
implementation-defined system registers. The syntax for these registers is:
S<op0>_<op1>_<CRn>_<CRm>_<op2>
The encoding space permitted for implementation-defined system registers
is:
op0 op1 CRn CRm op2
11 xxx 1x11 xxxx xxx
The full encoding space can now be accessed:
op0 op1 CRn CRm op2
xx xxx xxxx xxxx xxx
This is useful to anyone needing to write assembly code supporting new
system registers before the assembler has learned the official names for
them.
llvm-svn: 218753
This teaches the AArch64 backend to deal with the operations required
to deal with the operations on v4f16 and v8f16 which are exposed by
NEON intrinsics, plus the add, sub, mul and div operations.
llvm-svn: 216555
Re-commit of r214832,r21469 with a work-around that
avoids the previous problem with gcc build compilers
The work-around is to use SmallVector instead of ArrayRef
of basic blocks in preservesResourceLen()/MachineCombiner.cpp
llvm-svn: 215151
sequence on AArch64
Re-commit of r214669 without changes to test cases
LLVM::CodeGen/AArch64/arm64-neon-mul-div.ll and
LLVM:: CodeGen/AArch64/dp-3source.ll
This resolves the reported compfails of the original commit.
llvm-svn: 214832
sequence - AArch64 target support
This patch turns off madd/msub generation in the DAGCombiner and generates
them in the MachineCombiner instead. It replaces the original code sequence
with the combined sequence when it is beneficial to do so.
When there is no machine model support it always generates the madd/msub
instruction. This is true also when the objective is to optimize for code
size: when the combined sequence is shorter is always chosen and does not
get evaluated.
When there is a machine model the combined instruction sequence
is evaluated for critical path and resource length using machine
trace metrics and the original code sequence is replaced when it is
determined to be faster.
rdar://16319955
llvm-svn: 214669
Memory barrier __builtin_arm_[dmb, dsb, isb] intrinsics are required to
implement their corresponding ACLE and MSVC intrinsics.
This patch ports ARM dmb, dsb, isb intrinsic to AArch64.
Differential Revision: http://reviews.llvm.org/D4520
llvm-svn: 213247
This adds a llvm.aarch64.hint intrinsic to mirror the llvm.arm.hint in order to
support the various hint intrinsic functions in the ACLE.
Add an optional pattern field that permits the subclass to specify the pattern
that matches the selection. The intrinsic pattern is set as mayLoad, mayStore,
so overload the value for the definition of the hint instruction.
llvm-svn: 212883
This patch teaches the AsmParser to accept some logical+immediate
instructions and convert them as shown:
bic Rd, Rn, #imm -> and Rd, Rn, #~imm
bics Rd, Rn, #imm -> ands Rd, Rn, #~imm
orn Rd, Rn, #imm -> orr Rd, Rn, #~imm
eon Rd, Rn, #imm -> eor Rd, Rn, #~imm
Those instructions are an alternate syntax available to assembly coders,
and are needed in order to support code already compiling with some other
assemblers. For example, the bic construct is used by the linux kernel.
llvm-svn: 212722
inverted condition codes (CINC, CINV, CNEG, CSET, and CSETM).
Matching aliases based on "immediate classes", when disassembling,
wasn't previously supported, hence adding MCOperandPredicate
into class Operand, and implementing the support for it
in AsmWriterEmitter.
The parsing for those aliases was already custom, so just adding
the missing condition into AArch64AsmParser::parseCondCode.
llvm-svn: 210528
This commit starts with a "git mv ARM64 AArch64" and continues out
from there, renaming the C++ classes, intrinsics, and other
target-local objects for consistency.
"ARM64" test directories are also moved, and tests that began their
life in ARM64 use an arm64 triple, those from AArch64 use an aarch64
triple. Both should be equivalent though.
This finishes the AArch64 merge, and everyone should feel free to
continue committing as normal now.
llvm-svn: 209577
I'm doing this in two phases for a better "git blame" record. This
commit removes the previous AArch64 backend and redirects all
functionality to ARM64. It also deduplicates test-lines and removes
orphaned AArch64 tests.
The next step will be "git mv ARM64 AArch64" and rewire most of the
tests.
Hopefully LLVM is still functional, though it would be even better if
no-one ever had to care because the rename happens straight
afterwards.
llvm-svn: 209576
Only one instruction pair needed changing: SMULH & UMULH. The previous
code worked, but MC was doing extra work treating Ra as a valid
operand (which then got completely overwritten in MCCodeEmitter).
No behaviour change, so no tests.
llvm-svn: 203772
This adds a new subtarget feature called FPARMv8 (implied by NEON), and
predicates the support of the FP instructions and registers on this feature.
llvm-svn: 193739
class. The instruction class includes the signed saturating doubling
multiply-add long, signed saturating doubling multiply-subtract long, and
the signed saturating doubling multiply long instructions.
llvm-svn: 192908
Including following 14 instructions:
4 ld1 insts: load multiple 1-element structure to sequential 1/2/3/4 registers.
ld2/ld3/ld4: load multiple N-element structure to sequential N registers (N=2,3,4).
4 st1 insts: store multiple 1-element structure from sequential 1/2/3/4 registers.
st2/st3/st4: store multiple N-element structure from sequential N registers (N = 2,3,4).
llvm-svn: 192361
Including following 14 instructions:
4 ld1 insts: load multiple 1-element structure to sequential 1/2/3/4 registers.
ld2/ld3/ld4: load multiple N-element structure to sequential N registers (N=2,3,4).
4 st1 insts: store multiple 1-element structure from sequential 1/2/3/4 registers.
st2/st3/st4: store multiple N-element structure from sequential N registers (N = 2,3,4).
llvm-svn: 192352
Patch by Ana Pazos.
1.Added support for v1ix and v1fx types.
2.Added Scalar Pairwise Reduce instructions.
3.Added initial implementation of Scalar Arithmetic instructions.
llvm-svn: 191263
Patch by Ana Pazos.
- Completed implementation of instruction formats:
AdvSIMD three same
AdvSIMD modified immediate
AdvSIMD scalar pairwise
- Completed implementation of instruction classes
(some of the instructions in these classes
belong to yet unfinished instruction formats):
Vector Arithmetic
Vector Immediate
Vector Pairwise Arithmetic
- Initial implementation of instruction formats:
AdvSIMD scalar two-reg misc
AdvSIMD scalar three same
- Intial implementation of instruction class:
Scalar Arithmetic
- Initial clang changes to support arm v8 intrinsics.
Note: no clang changes for scalar intrinsics function name mangling yet.
- Comprehensive test cases for added instructions
To verify auto codegen, encoding, decoding, diagnosis, intrinsics.
llvm-svn: 187567