Clang will now honor the FP_CONTRACT pragma and emit LLVM
fmuladd intrinsics for expressions of the form A * B + C (when they occur in a
single statement).
llvm-svn: 164989
integral promotions to both its underlying type and to its underlying type's
promoted type. This matters now that boolean conversions aren't permitted in
converted constant expressions (a la DR1407): an enumerator with a fixed
underlying type of bool still can be.
llvm-svn: 163841
A couple of missing "RequireNonAbstractType" calls in conditional operator
handling. I looked for opportunities to tie this check in to all relevant
callers of PerformCopyInitialization (couldn't be all callers since this is
called for base subobject copying too, where it's acceptable to copy abstract
types) but the callers varied too much & in many cases had substantial code
or conditionals on the RequireNonAbstractType call, the
PerformCopyInitialization call, or the code between the two calls.
llvm-svn: 163555
A conditional operator between glvalues of types cv1 T and cv2 T produces a
glvalue if the expressions are of the same value kind and one of cv1 and cv2
is a subset of the other.
A conditional operator between two null pointer constants is permitted if one
of them is of type std::nullptr_t.
llvm-svn: 161476
and the other is a glvalue of class type, don't forget to copy-initialize a
temporary when performing the lvalue-to-rvalue conversion on the glvalue.
Strangely, DefaultLvalueConversions misses this part of the lvalue-to-rvalue
conversions.
llvm-svn: 161450
expressions to have complete return types (or accessible destructors). If the
return type is required to be complete for some other reason (for instance, if
it is needed by overload resolution), then it will still be required to be
complete. This is apparently required in order to parse a MSVC11 header.
llvm-svn: 160924
a defaulted special member function until the exception specification is needed
(using the same criteria used for the delayed instantiation of exception
specifications for function temploids).
EST_Delayed is now EST_Unevaluated (using 1330's terminology), and, like
EST_Uninstantiated, carries a pointer to the FunctionDecl which will be used to
resolve the exception specification.
This is enabled for all C++ modes: it's a little faster in the case where the
exception specification isn't used, allows our C++11-in-C++98 extensions to
work, and is still correct for C++98, since in that mode the computation of the
exception specification can't fail.
The diagnostics here aren't great (in particular, we should include implicit
evaluation of exception specifications for defaulted special members in the
template instantiation backtraces), but they're not much worse than before.
Our approach to the problem of cycles between in-class initializers and the
exception specification for a defaulted default constructor is modified a
little by this change -- we now reject any odr-use of a defaulted default
constructor if that constructor uses an in-class initializer and the use is in
an in-class initialzer which is declared lexically earlier. This is a closer
approximation to the current draft solution in core issue 1351, but isn't an
exact match (but the current draft wording isn't reasonable, so that's to be
expected).
llvm-svn: 160847
type traits that assignment to/construction of a lifetime-qualified
object under ARC is *not* trivial. Fixes <rdar://problem/11738725>.
llvm-svn: 159401
* Escaped "::" and "<" as needed in Doxygen comments;
* Marked up code examples with \code...\endcode;
* Documented a \param that is current, instead of a few that aren't;
* Fixed up some \file and \brief comments.
llvm-svn: 158562
This improves the conversion diagnostics (by correctly pointing to the loop
construct for conversions that may've been caused by the contextual conversion
to bool caused by a condition expression) and also causes the NULL conversion
warnings to be correctly suppressed when crossing a macro boundary in such a
context. (previously, since the conversion context location was incorrect, the
suppression could not be performed)
Reported by Nico Weber as feedback to r156826.
llvm-svn: 156901
Sema::ConvertToIntegralOrEnumerationType() from PartialDiagnostics to
abstract "diagnoser" classes. Not much of a win here, but we're
-several PartialDiagnostics.
llvm-svn: 156217
off PartialDiagnostic. PartialDiagnostic is rather heavyweight for
something that is in the critical path and is rarely used. So, switch
over to an abstract-class-based callback mechanism that delays most of
the work until a diagnostic is actually produced. Good for ~11k code
size reduction in the compiler and 1% speedup in -fsyntax-only on the
code in <rdar://problem/11004361>.
llvm-svn: 156176
being used in an exception specification in a way which isn't otherwise
ill-formed in C++98: this warning also incorrectly triggered on uses of 'this'
inside thread-safety attributes, and the mechanism required to tell these cases
apart is more complex than can be justified by the (minimal) value of this part
of -Wc++98-compat.
llvm-svn: 155857
We have a new flavor of exception specification, EST_Uninstantiated. A function
type with this exception specification carries a pointer to a FunctionDecl, and
the exception specification for that FunctionDecl is instantiated (if needed)
and used in the place of the function type's exception specification.
When a function template declaration with a non-trivial exception specification
is instantiated, the specialization's exception specification is set to this
new 'uninstantiated' kind rather than being instantiated immediately.
Expr::CanThrow has migrated onto Sema, so it can instantiate exception specs
on-demand. Also, any odr-use of a function triggers the instantiation of its
exception specification (the exception specification could be needed by IRGen).
In passing, fix two places where a DeclRefExpr was created but the corresponding
function was not actually marked odr-used. We used to get away with this, but
don't any more.
Also fix a bug where instantiating an exception specification which refers to
function parameters resulted in a crash. We still have the same bug in default
arguments, which I'll be looking into next.
This, plus a tiny patch to fix libstdc++'s common_type, is enough for clang to
parse (and, in very limited testing, support) all of libstdc++4.7's standard
headers.
llvm-svn: 154886
in the declaration of a non-static member function after the
(optional) cv-qualifier-seq, which in practice means in the exception
specification and late-specified return type.
The new scheme here used to manage 'this' outside of a member function
scope is more general than the Scope-based mechanism previously used
for non-static data member initializers and late-parsesd attributes,
because it can also handle the cv-qualifiers on the member
function. Note, however, that a separate pass is required for static
member functions to determine whether 'this' was used, because we
might not know that we have a static function until after declaration
matching.
Finally, this introduces name mangling for 'this' and for the implicit
'this', which is intended to match GCC's mangling. Independent
verification for the new mangling test case would be appreciated.
Fixes PR10036 and PR12450.
llvm-svn: 154799
in general (such an atomic has boolean representation) and
specifically for IR generation of __c11_atomic_init. The latter also
means actually using initialization semantics for this initialization,
rather than just creating a store.
On a related note, make sure we actually put in non-atomic-to-atomic
conversions when performing an implicit conversion sequence. IR
generation is far too kind here, but we still want the ASTs to make
sense.
llvm-svn: 154612
- The [class.protected] restriction is non-trivial for any instance
member, even if the access lacks an object (for example, if it's
a pointer-to-member constant). In this case, it is equivalent to
requiring the naming class to equal the context class.
- The [class.protected] restriction applies to accesses to constructors
and destructors. A protected constructor or destructor can only be
used to create or destroy a base subobject, as a direct result.
- Several places were dropping or misapplying object information.
The standard could really be much clearer about what the object type is
supposed to be in some of these accesses. Usually it's easy enough to
find a reasonable answer, but still, the standard makes a very confident
statement about accesses to instance members only being possible in
either pointer-to-member literals or member access expressions, which
just completely ignores concepts like constructor and destructor
calls, using declarations, unevaluated field references, etc.
llvm-svn: 154248
track whether the referenced declaration comes from an enclosing
local context. I'm amenable to suggestions about the exact meaning
of this bit.
llvm-svn: 152491