Also avoid some pointless use of auto! Because that's friendlier to
readers and avoids several types accidentally resolving to unnecessary
references here (MachineInstr *&, unsigned &).
llvm-svn: 278894
Rather than doing a funny dance that relies on dereferencing end() not
crashing, add some API to MachineInstrBundleIterator to get a non-const
version of the iterator.
llvm-svn: 278870
If AnalyzeBranch can't analyze a block and it is possible to
fallthrough, then duplicating the block doesn't make sense, as only one
block can be the layout predecessor for the un-analyzable fallthrough.
Submitted wit a test case, but NOTE: the test case doesn't currently
fail. However, the test case fails with D20505 and would have saved me
some time debugging.
llvm-svn: 278866
The current MachineBasicBlock might be the last block, so FallThru may
be past the end(). Use getNextNode(), which will convert to nullptr,
rather than &*++, which is invalid if we reach the end().
llvm-svn: 278858
Do not reorder and move up a loop latch block before a loop header
when optimising for size because this will generate an extra
unconditional branch.
Differential Revision: https://reviews.llvm.org/D22521
llvm-svn: 278840
The pipeliner was generating an invalid Phi name for an operand
in the epilog block, which caused an assert in the live variable
analysis pass. The fix is to the code that generates new Phis
in the epilog block. In this case, there is an existing Phi that
needs to be reused rather than creating a new Phi instruction.
Differential Revision: https://reviews.llvm.org/D23513
llvm-svn: 278805
Following the discussion on D22038, this refactors a PowerPC specific setcc -> srl(ctlz) transformation so it can be used by other targets.
Differential Revision: https://reviews.llvm.org/D23445
llvm-svn: 278799
in debug info using their stack slots instead of as an indirection of param reg + 0
offset. This is done by detecting FrameIndexSDNodes in SelectionDAG and generating
FrameIndexDbgValues for them. This ultimately generates DBG_VALUEs with stack
location operands.
Differential Revision: http://reviews.llvm.org/D23283
llvm-svn: 278703
This adds two new utility functions findLoopControlBlock and findLoopPreheader
to MachineLoop and MachineLoopInfo. These functions are refactored and taken
from the Hexagon target as they are target independent; thus this is intendend to
be a non-functional change.
Differential Revision: https://reviews.llvm.org/D22959
llvm-svn: 278661
Remove all ilist_iterator to pointer casts. There were two reasons for
casts:
- Checking for an uninitialized (i.e., null) iterator. I added
MachineInstrBundleIterator::isValid() to check for that case.
- Comparing an iterator against the underlying pointer value while
avoiding converting the pointer value to an iterator. This is
occasionally necessary in MachineInstrBundleIterator, since there is
an assertion in the constructors that the underlying MachineInstr is
not bundled (but we don't care about that if we're just checking for
pointer equality).
To support the latter case, I rewrote the == and != operators for
ilist_iterator and MachineInstrBundleIterator.
- The implicit constructors now use enable_if to exclude
const-iterator => non-const-iterator conversions from overload
resolution (previously it was a compiler error on instantiation, now
it's SFINAE).
- The == and != operators are now global (friends), and are not
templated.
- MachineInstrBundleIterator has overloads to compare against both
const_pointer and const_reference. This avoids the implicit
conversions to MachineInstrBundleIterator that assert, instead just
checking the address (and I added unit tests to confirm this).
Notably, the only remaining uses of ilist_iterator::getNodePtrUnchecked
are in ilist.h, and no code outside of ilist*.h directly relies on this
UB end-iterator-to-pointer conversion anymore. It's still needed for
ilist_*sentinel_traits, but I'll clean that up soon.
llvm-svn: 278478
To fix PR28014, this patch restricts tail merging to blocks that belong to the
same loop after MBP.
Differential Revision: https://reviews.llvm.org/D23191
llvm-svn: 278463
It's sharing the integer G_CONSTANT for now since I don't *think* it creates
any ambiguity (even on weird archs). If that turns out wrong we can create a
G_PTRCONSTANT or something.
llvm-svn: 278423
Check MachineInstr::isDebugValue for the same instruction as we're
calling isSchedBoundary, avoiding the possibility of dereferencing
end().
This is a functionality change even when I!=end(). Matthias had a look
and agrees this is the right resolution (as opposed to checking for
end()).
This is triggered by a huge number of tests, but they happen to
magically pass right now. I found this because WIP patches for PR26753
convert them into crashes.
llvm-svn: 278394
Summary: Some backends, like WebAssembly, use virtual registers instead of physical registers. This crashes the DbgValueHistoryCalculator pass, which assumes that all registers are physical. Instead, skip virtual registers when iterating aliases, and assume that they are clobbered.
Reviewers: dexonsmith, dschuff, aprantl
Subscribers: yurydelendik, llvm-commits, jfb, sunfish
Differential Revision: https://reviews.llvm.org/D22590
llvm-svn: 278371
After machine block placement, MBBs may not have terminators, and it is
appropriate to check for the end iterator here. We can fold the check
into the next if, as well. This look is really just looking for BBs that
end in CATCHRET.
llvm-svn: 278350
Check for an end iterator from MachineBasicBlock::getFirstTerminator in
llvm::getFuncletMembership. If this is turned into an assertion, it
fires in 48 X86 testcases (for example,
CodeGen/X86/regalloc-spill-at-ehpad.ll).
Since this is likely a latent bug (shouldn't all basic blocks end with a
terminator?) I've filed PR28938.
llvm-svn: 278344
This patch helps avoid false dependencies on undef registers by updating the machine instructions' undef operand to use a register that the instruction is truly dependent on, or use a register with clearance higher than Pref.
Pseudo example:
loop:
xmm0 = ...
xmm1 = vcvtsi2sdl eax, xmm0<undef>
... = inst xmm0
jmp loop
In this example, selecting xmm0 as the undef register creates false dependency between loop iterations.
This false dependency cannot be solved by inserting an xor before vcvtsi2sdl because xmm0 is alive at the point of the vcvtsi2sdl instruction.
Selecting a different register instead of xmm0, especially a register that is not used in the loop, will eliminate this problem.
Differential Revision: https://reviews.llvm.org/D22466
llvm-svn: 278321
It's more than just inttoptr, but the others can't be tested until we have
support for non-trivial constants (they currently get unavoidably folded to a
ConstantInt).
llvm-svn: 278303
If AnalyzeBranch can't analyze a block and it is possible to
fallthrough, then duplicating the block doesn't make sense, as only one
block can be the layout predecessor for the un-analyzable fallthrough.
Submitted wit a test case, but NOTE: the test case doesn't currently
fail. However, the test case fails with D20505 and would have saved me
some time debugging.
llvm-svn: 278288
Summary:
See the new test case for one that was (non-deterministically) crashing
on trunk and deterministically hit the assertion that I added in D23302.
Basically, the machine function contains a sequence
DS_WRITE_B32 %vreg4, %vreg14:sub0, ...
DS_WRITE_B32 %vreg4, %vreg14:sub0, ...
%vreg14:sub1<def> = COPY %vreg14:sub0
and SILoadStoreOptimizer::mergeWrite2Pair merges the two DS_WRITE_B32
instructions into one before calling repairIntervalsInRange.
Now repairIntervalsInRange wants to repair %vreg14, in particular, and
ends up trying to repair %vreg14:sub1 as well, but that only becomes
active _after_ the range that is to be repaired, hence the crash due
to LR.find(...) == LR.begin() at the start of repairOldRegInRange.
I believe that just skipping those subrange is fine, but again, not too
familiar with that code.
Reviewers: MatzeB, kparzysz, tstellarAMD
Subscribers: llvm-commits, MatzeB
Differential Revision: https://reviews.llvm.org/D23303
llvm-svn: 278268
This change makes it possible for tail-duplication and tail-merging to
be disjoint. By being less aggressive when merging during layout, there are no
overlapping cases between tail-duplication and tail-merging, provided the
thresholds are disjoint.
There is a remaining TODO to benchmark the succ_size() test for non-layout tail
merging.
llvm-svn: 278265
If the value produced by the bitcast hasn't been referenced yet, we can simply
reuse the input register avoiding an unnecessary COPY instruction.
llvm-svn: 278245
If the input vector to INSERT_SUBVECTOR is another INSERT_SUBVECTOR, and this inserted subvector replaces the last insertion, then insert into the common source vector.
i.e.
INSERT_SUBVECTOR( INSERT_SUBVECTOR( Vec, SubOld, Idx ), SubNew, Idx ) --> INSERT_SUBVECTOR( Vec, SubNew, Idx )
Differential Revision: https://reviews.llvm.org/D23330
llvm-svn: 278211