The option to control the emission of the new relocations
is -relax-relocations (blatantly copied from GNU as).
It can't be enabled by default because it breaks relatively
recent versions of ld.bfd/ld.gold (late 2015).
llvm-svn: 267307
It seems we still have some ordering issue in the combined index
emission, but I can't figure out why right now.
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 267306
This is a fixup for r267304.
The test was sensitive to the path in a subtle way:
the index in memory is sorted by GUID, which are hashes
that include the source filename for local globals.
Teresa recently added a directive at the IR level, so
we can specify it here to make the test independent of
the path.
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 267305
Summary:
As discussed in D18298, some local globals can't
be renamed/promoted (because they have a section, or because
they are referenced from inline assembly).
To be able to detect naming collision, we need to keep around
the "GUID" using their original name without taking the linkage
into account.
Reviewers: tejohnson
Subscribers: joker.eph, llvm-commits
Differential Revision: http://reviews.llvm.org/D19454
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 267304
Summary:
We are always importing the initializer for a GlobalVariable.
So if a GlobalVariable is in the export-list, we pull in any
refs as well.
Reviewers: tejohnson
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D19102
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 267303
Eliminate DITypeIdentifierMap and make DITypeRef a thin wrapper around
DIType*. It is no longer legal to refer to a DICompositeType by its
'identifier:', and DIBuilder no longer retains all types with an
'identifier:' automatically.
Aside from the bitcode upgrade, this is mainly removing logic to resolve
an MDString-based reference to an actualy DIType. The commits leading
up to this have made the implicit type map in DICompileUnit's
'retainedTypes:' field superfluous.
This does not remove DITypeRef, DIScopeRef, DINodeRef, and
DITypeRefArray, or stop using them in DI-related metadata. Although as
of this commit they aren't serving a useful purpose, there are patchces
under review to reuse them for CodeView support.
The tests in LLVM were updated with deref-typerefs.sh, which is attached
to the thread "[RFC] Lazy-loading of debug info metadata":
http://lists.llvm.org/pipermail/llvm-dev/2016-April/098318.html
llvm-svn: 267296
Summary:
This removes a couple of flags added to control this behavior, and
simply keeps all value names when save-temps is specified.
Reviewers: rafael
Subscribers: llvm-commits, pcc, davide
Differential Revision: http://reviews.llvm.org/D19384
llvm-svn: 267279
Since forward references for uniqued node operands are expensive (and
those for distinct node operands are cheap due to
DistinctMDOperandPlaceholder), minimize forward references in uniqued
node operands.
Moreover, guarantee that when a cycle is broken by a distinct node, none
of the uniqued nodes have any forward references. In
ValueEnumerator::EnumerateMetadata, enumerate uniqued node subgraphs
first, delaying distinct nodes until all uniqued nodes have been
handled. This guarantees that uniqued nodes only have forward
references when there is a uniquing cycle (since r267276 changed
ValueEnumerator::organizeMetadata to partition distinct nodes in front
of uniqued nodes as a post-pass).
Note that a single uniqued subgraph can hit multiple distinct nodes at
its leaves. Ideally these would themselves be emitted in post-order,
but this commit doesn't attempt that; I think it requires an extra pass
through the edges, which I'm not convinced is worth it (since
DistinctMDOperandPlaceholder makes forward references quite cheap
between distinct nodes).
I've added two testcases:
- test/Bitcode/mdnodes-distinct-in-post-order.ll is just like
test/Bitcode/mdnodes-in-post-order.ll, except with distinct nodes
instead of uniqued ones. This confirms that, in the absence of
uniqued nodes, distinct nodes are still emitted in post-order.
- test/Bitcode/mdnodes-distinct-nodes-break-cycles.ll is the minimal
example where a naive post-order traversal would cause one uniqued
node to forward-reference another. IOW, it's the motivating test.
llvm-svn: 267278
When an operand of a distinct node hasn't been read yet, the reader can
use a DistinctMDOperandPlaceholder. This is much cheaper than forward
referencing from a uniqued node. Change
ValueEnumerator::organizeMetadata to partition distinct nodes and
uniqued nodes to reduce the overhead of cycles broken by distinct nodes.
Mehdi measured this for me; this removes most of the RAUW from the
importing step of -flto=thin, even after a WIP patch that removes
string-based DITypeRefs (introducing many more cycles to the metadata
graph).
llvm-svn: 267276
Before we printed a warning to stderr and left the actual output stream in a
mess. This tries to print a .long or .short representation of what we saw (as
if there was a data-in-code directive).
This isn't guaranteed to restore synchronization in Thumb-mode (if the invalid
instruction was supposed to be 32-bits, we may be off-by-16 for the rest of the
function). But there's no certain way to deal with that, and it's invalid code
anyway (if the data really wasn't an instruction, the user can add proper
.data_in_code directives if they care)
llvm-svn: 267250
Only one consumer (llvm-objdump) actually cared about the fact that there were
two triples. Others were actively working around the fact that the Triple
returned by getArch might have been invalid. As for llvm-objdump, it needs to
be acutely aware of both Triples anyway, so being generic in the exposed API is
no benefit.
Also rename the version of getArch returning a Triple. Users were having to
pass an unwanted nullptr to disambiguate the two, which was nasty.
The only functional change here is that armv7m and armv7em object files no
longer crash llvm-objdump.
llvm-svn: 267249
The dwo_name was added to dwo files to improve diagnostics in dwp, but
it confuses tools that attempt to load any dwo named by a dwo_name, even
ones inside dwos. Avoid this by keeping track of whether a unit is
already a dwo unit, and if so, not loading further dwos.
llvm-svn: 267241
The original commit was reverted because of a buildbot problem with LazyCallGraph::SCC handling (not related to the OptBisect handling).
Differential Revision: http://reviews.llvm.org/D19172
llvm-svn: 267231
Rather than relying on the gmlt-like data emitted into the .o/executable
which only contains the simple name of any inlined functions, use the
.dwo file if present.
Test symbolication with/without a .dwo, and the old test that was
testing behavior when no gmlt-like data was present. (I haven't included
a test of non-gmlt-like data + no .dwo (that would be akin to
symbolication with no debug info) but we could add one for completeness)
The test was simplified a bit to be a little clearer (unoptimized, force
inline, using a function call as the inlined entity) and regenerated
with ToT clang. For the no-gmlt-like-data case, I modified Clang back to
its old behavior temporarily & the .dwo file is identical so it is
shared between the two executables.
llvm-svn: 267227
This intrinsic takes two arguments, ``%ptr`` and ``%offset``. It loads
a 32-bit value from the address ``%ptr + %offset``, adds ``%ptr`` to that
value and returns it. The constant folder specifically recognizes the form of
this intrinsic and the constant initializers it may load from; if a loaded
constant initializer is known to have the form ``i32 trunc(x - %ptr)``,
the intrinsic call is folded to ``x``.
LLVM provides that the calculation of such a constant initializer will
not overflow at link time under the medium code model if ``x`` is an
``unnamed_addr`` function. However, it does not provide this guarantee for
a constant initializer folded into a function body. This intrinsic can be
used to avoid the possibility of overflows when loading from such a constant.
Differential Revision: http://reviews.llvm.org/D18367
llvm-svn: 267223
Summary:
We can fold compares to false when two distinct allocations within a
function are compared for equality.
Patch by Anna Thomas!
Reviewers: majnemer, reames, sanjoy
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D19390
llvm-svn: 267214
The relative vtable ABI (PR26723) needs PLT relocations to refer to virtual
functions defined in other DSOs. The unnamed_addr attribute means that the
function's address is not significant, so we're allowed to substitute it
with the address of a PLT entry.
Also includes a bonus feature: addends for COFF image-relative references.
Differential Revision: http://reviews.llvm.org/D17938
llvm-svn: 267211
Extend the type canonicalization logic to work for unordered atomic loads and stores. Note that while this change itself is fairly simple and low risk, there's a reasonable chance this will expose problems in the backends by suddenly generating IR they wouldn't have seen before. Anything of this nature will be an existing bug in the backend (you could write an atomic float load), but this will definitely change the frequency with which such cases are encountered. If you see problems, feel free to revert this change, but please make sure you collect a test case.
llvm-svn: 267210
The opcode for the optimized branch does not depend on the size
of the activate bits in the AND masks, but the AND opcode itself.
Indeed, we need to use a X or W variant based on the AND variant
not based on whether the mask fits into the related variant.
Otherwise, we may end up using the W variant of the optimized branch
for 64-bit register inputs!
This fixes the last make check verifier issues for AArch64: PR27479.
llvm-svn: 267206
Summary: This change will shorten memset if the beginning of memset is overwritten by later stores.
Reviewers: hfinkel, eeckstein, dberlin, mcrosier
Subscribers: mgrang, mcrosier, llvm-commits
Differential Revision: http://reviews.llvm.org/D18906
llvm-svn: 267197
Avoid quadratic complexity in unusually large basic blocks by limiting
the size of the ready lists.
Differential Revision: http://reviews.llvm.org/D19349
llvm-svn: 267189
In the next change, I am generalizing the function
findStringMetadataForLoop and I want to make sure I don't break this.
Looks like there was no coverage for this so far.
llvm-svn: 267182
We used to simply set the kill flags to true when transforming a scalar
instruction to a vector one.
SrcScalar1 = copy SrcVector1
... = opScalar SrcScalar1
=>
SrcScalar1 = copy SrcVector1
... = opVector SrcVector1<kill>
This is obviously wrong. The proper update consists in:
1. Propagate the kill status from the copy to the new opVector
2. Reset the kill status on the copy, since the live-range of
SrcVector1 got extended.
This fixes some of the machine verifier errors for AArch64 with make check.
llvm-svn: 267180
Rather than checking both stdout and stderr simultaneously, split it into two
tests. This apparently breaks on Windows where MSVCRT does not buffer output
correctly. NFC.
Thanks to chapuni for bringing the issue to my attention!
llvm-svn: 267179
Summary: eq imply [u|s]ge and [u|s]le are true.
Remove redundant logic by implementing isImpliedFalseByMatchingCmp(Pred1, Pred2)
as isImpliedTrueByMatchingCmp(Pred1, getInversePredicate(Pred2)).
llvm-svn: 267177
Summary:
(... while still not using a PostDomTree)
The way we use isKnownNotFullPoison from SCEV today, the new CFG walking
logic will not trigger for any realistic cases -- it will kick in only
for situations where we could have merged the contiguous basic blocks
anyway[0], since the poison generating instruction dominates all of its
non-PHI uses (which are the only uses we consider right now).
However, having this change in place will allow a later bugfix to break
fewer llvm-lit tests.
[0]: i.e. cases where block A branches to block B and B is A's only
successor and A is B's only predecessor.
Reviewers: broune, bjarke.roune
Subscribers: mcrosier, llvm-commits
Differential Revision: http://reviews.llvm.org/D19212
llvm-svn: 267175
Summary: [u|s]gt and [u|s]lt imply [u|s]ge and [u|s]le are true, respectively.
I've simplified the existing tests and added additional tests to cover the new
cases mentioned above. I've also added tests for all the cases where the
first compare doesn't imply anything about the second compare.
llvm-svn: 267171
A followup commit will replace these tests with simplified and more inclusive
tests. The diff is unreadable if this were to be done in a single commit.
llvm-svn: 267170
- Switch few loops to range-based for loops
- Fix nop insertion at the end of BB
- Fix formatting
- Check for endpgm
Differential Revision: http://reviews.llvm.org/D19380
llvm-svn: 267167
We take the intersection of overflow flags while CSE'ing.
This permits us to consider two instructions with different overflow
behavior to be replaceable.
llvm-svn: 267153
Summary:
When generating assembly using -m16 we must explicitly mark it as
16-bit. Emit .code16 at beginning of file. Fixes wrong results when
using -fno-integrated-as.
Reviewers: dwmw2
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D19392
llvm-svn: 267152
When targetting MIPS64R6 some of the patterns for select were guarded by a
broken predicate. The predicate was supposed to test if a constant value
could fit in a 16 bit zero-extended field. Instead the value was tested to
fit in a 16 bit sign-extended field. For negative constants of native word
width this resulted in wrong code generation.
Reviewers: vkalintiris, dsanders
Differential Review: http://reviews.llvm.org/D19378
llvm-svn: 267151
r267049 broke multiple buildbots (e.g. clang-cmake-mips, and clang-x86_64-linux-selfhost-modules) which the follow-ups have not yet resolved and this is preventing subsequent committers from being notified about additional failures on the affected buildbots.
llvm-svn: 267148
Summary:
When optimizing PHIs which have inputs floating point binary
operators, we preserve all IR flags except the fast math
flags.
This change removes the logic which tracked some of the IR flags
(no wrap, exact) and replaces it by doing an and on the IR flags of
all inputs to the PHI - which will also handle the fast math
flags.
Reviewers: majnemer
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D19370
llvm-svn: 267139
Summary:
rL256194 transforms truncations between vectors of integers into PACKUS/PACKSS
operations during DAG combine. This generates better code for truncate, so cost
of truncate needs to be changed but looks like it got changed only in SSE2 table
Whereas this change is also applicable for SSE4.1, so the cost of truncate needs
to be changed for that as well. Cost of “TRUNCATE v16i32 to v16i8” & “TRUNCATE
v16i16 to v16i8” should be same in SSE4.1 & SSE2 table. Removing their cost from
SSE4.1, so it will fall back to SSE2.
Reviewers: Simon Pilgrim
llvm-svn: 267123
EarlyCSE had inconsistent behavior with regards to flag'd instructions:
- In some cases, it would pessimize if the available instruction had
different flags by not performing CSE.
- In other cases, it would miscompile if it replaced an instruction
which had no flags with an instruction which has flags.
Fix this by being more consistent with our flag handling by utilizing
andIRFlags.
llvm-svn: 267111
Summary:
This intrinsic returns true if the current thread belongs to a live pixel
and false if it belongs to a pixel that we are executing only for derivative
computation. It will be used by Mesa to implement gl_HelperInvocation.
Note that for pixels that are killed during the shader, this implementation
also returns true, but it doesn't matter because those pixels are always
disabled in the EXEC mask.
This unearthed a corner case in the instruction verifier, which complained
about a v_cndmask 0, 1, exec, exec<imp-use> instruction. That's stupid but
correct code, so make the verifier accept it as such.
Reviewers: arsenm, tstellarAMD
Subscribers: arsenm, llvm-commits
Differential Revision: http://reviews.llvm.org/D19191
llvm-svn: 267102
Evaluates fmul+fadd -> fmadd combines and similar code sequences in the
machine combiner. It adds support for float and double similar to the existing
integer implementation. The key features are:
- DAGCombiner checks whether it should combine greedily or let the machine
combiner do the evaluation. This is only supported on ARM64.
- It gives preference to throughput over latency: the heuristic used is
to combine always in loops. The targets decides whether the machine
combiner should optimize for throughput or latency.
- Supports for fmadd, f(n)msub, fmla, fmls patterns
- On by default at O3 ffast-math
llvm-svn: 267098
This test used to write a .s file until r266971 fixed that. But on most bots,
the .s file still exists. Add an rm statement to clean up the bots. In a few
days, this statement can go away again.
llvm-svn: 267095
WIN__DBZCHK will insert a CBZ instruction into the stream. This instruction
reserves 3 bits for the condition register (rn). As such, we must ensure that
we restrict the register to a low register. Use the tGPR class instead of GPR
to ensure that this is properly constrained. In debug builds, we would attempt
to use lr as a condition register which would silently get truncated with no
hint that the register selection was incorrect.
llvm-svn: 267080
We'd disabled them on x86 because back in the early days some host tools
couldn't handle the new load commands. This no longer holds: anyone capable of
deploying Clang should be able to deploy its copies of ar/ranlib/etc.
rdar://25254790
llvm-svn: 267075
Summary:
Adds an instrumentation pass for the new EfficiencySanitizer ("esan")
performance tuning family of tools. Multiple tools will be supported
within the same framework. Preliminary support for a cache fragmentation
tool is included here.
The shared instrumentation includes:
+ Turn mem{set,cpy,move} instrinsics into library calls.
+ Slowpath instrumentation of loads and stores via callouts to
the runtime library.
+ Fastpath instrumentation will be per-tool.
+ Which memory accesses to ignore will be per-tool.
Reviewers: eugenis, vitalybuka, aizatsky, filcab
Subscribers: filcab, vkalintiris, pcc, silvas, llvm-commits, zhaoqin, kcc
Differential Revision: http://reviews.llvm.org/D19167
llvm-svn: 267058
Summary:
If we know that the pointer allocated within a function does not escape,
we can fold away comparisons that are done with global pointers
Patch by Anna Thomas!
Reviewers: reames, majnemer, sanjoy
Subscribers: mgrang, mcrosier, majnemer, llvm-commits
Differential Revision: http://reviews.llvm.org/D19276
llvm-svn: 267035
This patch implements a optimization bisect feature, which will allow optimizations to be selectively disabled at compile time in order to track down test failures that are caused by incorrect optimizations.
The bisection is enabled using a new command line option (-opt-bisect-limit). Individual passes that may be skipped call the OptBisect object (via an LLVMContext) to see if they should be skipped based on the bisect limit. A finer level of control (disabling individual transformations) can be managed through an addition OptBisect method, but this is not yet used.
The skip checking in this implementation is based on (and replaces) the skipOptnoneFunction check. Where that check was being called, a new call has been inserted in its place which checks the bisect limit and the optnone attribute. A new function call has been added for module and SCC passes that behaves in a similar way.
Differential Revision: http://reviews.llvm.org/D19172
llvm-svn: 267022
This builds on 266999 which made FindAvailableValue do the right thing. Tests included show the newly enabled transforms and those which disabled either due to conservatism or correctness requirements.
llvm-svn: 267006
Before this fix, DILexicalBlockFile entries were skipped only in some cases and were not in other cases.
Differential Revision: http://reviews.llvm.org/D18724
llvm-svn: 267004
This change adds a couple of test cases to make sure FindAvailableLoadedValue does the right thing. At the moment, the code added is dead, but separating it makes follow on changes far more obvious.
llvm-svn: 266999
AArch64InstrInfo::optimizeCompareInstr has bug PR27158 which causes generation of incorrect code.
A compare instruction is substituted with another instruction which does not
produce the same flags as the original compare instruction.
This patch contains:
1. Fix of the bug.
2. A regression test in MIR.
3. A new test to check that SUBS is replaced by SUB.
Differential Revision: http://reviews.llvm.org/D18838
llvm-svn: 266969
This help to streamline the process of handling importing since
we don't need to special case alias everywhere: just like
linkonce_odr function, make sure at least one alias is emitted
by turning it weak.
Differential Revision: http://reviews.llvm.org/D19308
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 266958
Summary:
`llvm.guard(false)` always bails out of the current compilation unit, so
we can prune any control flow following it.
Reviewers: hfinkel, pcc, reames
Subscribers: majnemer, reames, mcrosier, llvm-commits
Differential Revision: http://reviews.llvm.org/D19245
llvm-svn: 266955
Summary:
The function importer already decided what symbols need to be pulled
in. Also these magically added ones will not be in the export list
for the source module, which can confuse the internalizer for
instance.
Reviewers: tejohnson, rafael
Subscribers: joker.eph, llvm-commits
Differential Revision: http://reviews.llvm.org/D19096
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 266948
Emit metadata nodes in post-order. The iterative algorithm from r266709
failed to maintain this property. After understanding my mistake, it
wasn't too hard to write a test with llvm-bcanalyzer (and I've actually
made this change once before: see r220340).
This also reverts the "noisy" testcase change from r266709. That should
have been more of a red flag :/.
Note: The same bug crept into the ValueMapper in r265456. I'm still
working on the fix.
llvm-svn: 266947
No matter what value you OR in to A, the result of (or A, B) is going to be UGE A. When A and B are positive, it's SGE too. If A is negative, OR'ing a value into it can't make it positive, but can increase its value closer to -1, therefore (or A, B) is SGE A. Working through all possible combinations produces this truth table:
```
A is
+, -, +/-
F F F + B is
T F ? -
? F ? +/-
```
The related optimizations are flipping the 'slt' for 'sge' which always NOTs the result (if the result is known), and swapping the LHS and RHS while swapping the comparison predicate.
There are more idioms left to implement (aren't there always!) but I've stopped here because any more would risk becoming unreasonable for reviewers.
llvm-svn: 266939
Produce another specific error message for a malformed Mach-O file when a symbol’s
string index is past the end of the string table. The existing test case in test/Object/macho-invalid.test
for macho-invalid-symbol-name-past-eof now reports the error with the message indicating
that a symbol at a specific index has a bad sting index and that bad string index value.
Again converting interfaces to Expected<> from ErrorOr<> does involve
touching a number of places. Where the existing code reported the error with a
string message or an error code it was converted to do the same. There is some
code for this that could be factored into a routine but I would like to leave that for
the code owners post-commit to do as they want for handling an llvm::Error. An
example of how this could be done is shown in the diff in
lib/ExecutionEngine/RuntimeDyld/RuntimeDyldImpl.h which had a Check() routine
already for std::error_code so I added one like it for llvm::Error .
Also there some were bugs in the existing code that did not deal with the
old ErrorOr<> return values. So now with Expected<> since they must be
checked and the error handled, I added a TODO and a comment:
“// TODO: Actually report errors helpfully” and a call something like
consumeError(NameOrErr.takeError()) so the buggy code will not crash
since needed to deal with the Error.
Note there fixes needed to lld that goes along with this that I will commit right after this.
So expect lld not to built after this commit and before the next one.
llvm-svn: 266919
Summary:
This is done for consistency with asan-use-after-return.
I see no other users than tests.
Reviewers: aizatsky, kcc
Differential Revision: http://reviews.llvm.org/D19306
llvm-svn: 266906
Differentiate between word and subword memory operations as they take different
amount of cycles to complete. This just adds a basic model of the subword
latency to the scheduler.
llvm-svn: 266898
This restores r266871 with a fix for gold tests relying on the value
names, when using a release compiler, by adding a way to disable the
default discarding. Update affected tests to use the new mechanism so
that value names are preserved as expected, regardless of how the
compiler was built.
llvm-svn: 266881
Summary:
This patch prevents importing from (and therefore exporting from) any
module with a "llvm.used" local value. Local values need to be promoted
and renamed when importing, and their presense on the llvm.used variable
indicates that there are opaque uses that won't see the rename. One such
example is a use in inline assembly.
See also the discussion at:
http://lists.llvm.org/pipermail/llvm-dev/2016-April/098047.html
As part of this, move collectUsedGlobalVariables out of Transforms/Utils
and into IR/Module so that it can be used more widely. There are several
other places in LLVM that used copies of this code that can be cleaned
up as a follow on NFC patch.
Reviewers: joker.eph
Subscribers: pcc, llvm-commits, joker.eph
Differential Revision: http://reviews.llvm.org/D18986
llvm-svn: 266877
This reverts commit r266871. Setting the default based on the NDEBUG
flag is causing test failures. Need to figure out whether to change this
approach or update tests.
llvm-svn: 266872
Summary:
Applies Mehdi's optimization (r263086) to disable value names other than
for GlobalValues to LTO/ThinLTO performed via the gold-plugin, in the
same manner as it is applied in libLTO.
Reviewers: rafael, joker-eph
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D19269
llvm-svn: 266871
Add ParseAMDGPURegister which can be invoked recursively for parsing lists.
Rename getRegForName to getSpecialRegForName.
Support legacy SP3 register list syntax: [s2,s3,s4,s5] or [flat_scratch_lo,flat_scratch_hi].
Add 64-bit registers TBA, TMA where missing.
Add some tests.
Differential Revision: http://reviews.llvm.org/D19163
llvm-svn: 266865
This linkage is *not* intended to express that a declaration refers
to a weak symbol, but that the symbol might not be present at link
time. I don't believe it was the intent.
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 266856
Because lowering of CMP_SWAP_64 occurs during type legalization, there can be
i64 types produced by more than just a BUILD_PAIR or similar. My initial tests
used just incoming function args.
llvm-svn: 266828
Summary:
This property is used to mark an intrinsic that only writes to memory, but
neither reads from memory nor has other side effects.
An example where this is useful is the llvm.amdgcn.buffer.store.format.*
intrinsic, which corresponds to a store instruction that goes through a special
buffer descriptor rather than through a plain pointer.
With this property, the intrinsic should still be handled as having side
effects at the LLVM IR level, but machine scheduling can make smarter
decisions.
Reviewers: tstellarAMD, arsenm, joker.eph, reames
Subscribers: arsenm, llvm-commits
Differential Revision: http://reviews.llvm.org/D18291
llvm-svn: 266826
Summary:
The added testcase, which triggered this, was derived from a shader-db case
via bugpoint. A separate question is why scalar branching wasn't used.
Reviewers: arsenm, tstellarAMD
Subscribers: arsenm, llvm-commits
Differential Revision: http://reviews.llvm.org/D19208
llvm-svn: 266825
Both AArch64 and ARM support llvm.<arch>.thread.pointer intrinsics that
just return the thread pointer. I have a pending patch that does the same
for SystemZ (D19054), and there are many more targets that could benefit
from one.
This patch merges the ARM and AArch64 intrinsics into a single target
independent one that will also be used by subsequent targets.
Differential Revision: http://reviews.llvm.org/D19098
llvm-svn: 266818
With this change, ideally IR pass can always generate llvm.stackguard
call to get the stack guard; but for now there are still IR form stack
guard customizations around (see getIRStackGuard()). Future SSP
customization should go through LOAD_STACK_GUARD.
There is a behavior change: stack guard values are not CSEed anymore,
since we should never reuse the value in case that it has been spilled (and
corrupted). See ssp-guard-spill.ll. This also cause the change of stack
size and codegen in X86 and AArch64 test cases.
Ideally we'd like to know if the guard created in llvm.stackprotector() gets
spilled or not. If the value is spilled, discard the value and reload
stack guard; otherwise reuse the value. This can be done by teaching
register allocator to know how to rematerialize LOAD_STACK_GUARD and
force a rematerialization (which seems hard), or check for spilling in
expandPostRAPseudo. It only makes sense when the stack guard is a global
variable, which requires more instructions to load. Anyway, this seems to go out
of the scope of the current patch.
llvm-svn: 266806
* Add lowering for SETCCE i32.
* Add test to check lowering of i64 compares uses SETCCE expansion (outside of EQ and NE).
* Fix select.ll test and immediate form selection for RI operations.
llvm-svn: 266802
Add a new method, DICompositeType::buildODRType, that will create or
mutate the DICompositeType for a given ODR identifier, and use it in
LLParser and BitcodeReader instead of DICompositeType::getODRType.
The logic is as follows:
- If there's no node, create one with the given arguments.
- Else, if the current node is a forward declaration and the new
arguments would create a definition, mutate the node to match the
new arguments.
- Else, return the old node.
This adds a missing feature supported by the current DITypeIdentifierMap
(which I'm slowly making redudant). The only remaining difference is
that the DITypeIdentifierMap has a "the-last-one-wins" rule, whereas
DICompositeType::buildODRType has a "the-first-one-wins" rule.
For now I'm leaving behind DICompositeType::getODRType since it has
obvious, low-level semantics that are convenient for unit testing.
llvm-svn: 266786
Simplify the test logic a little, sharing logic between the two linking
directions by specifying -check-prefix multiple times. Now it's more
obvious what's hte same and different between the two directions, and
there is less CHECK duplication. This is a prep for expanding the test.
llvm-svn: 266773
This patch improves SimplifyCFG to catch cases like:
if (a < b) {
if (a > b) <- known to be false
unreachable;
}
Phabricator Revision: http://reviews.llvm.org/D18905
llvm-svn: 266767
Summary:
There is no reason to have a weak reference because the external
definition will be weak.
Reviewers: rafael
Subscribers: llvm-commits, tejohnson
Differential Revision: http://reviews.llvm.org/D19267
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 266750
Lift the API for debug info ODR type uniquing up a layer. Instead of
clients managing the map directly on the LLVMContext, add a static
method to DICompositeType called getODRType and handle the map in the
background. Also adds DICompositeType::getODRTypeIfExists, so far just
for convenience in the unit tests.
This simplifies the logic in LLParser and BitcodeReader. Because of
argument spam there are actually a few more lines of code now; I'll see
if I come up with a reasonable way to clean that up.
llvm-svn: 266742
Using VPERMQ/VPERMPD allows memory folding of the (repeated) input where VINSERTI128/VINSERTF128 can not.
Differential Revision: http://reviews.llvm.org/D19228
llvm-svn: 266728
Summary:
The `"patchable-function"` attribute can be used by an LLVM client to
influence LLVM's code generation in ways that makes the generated code
easily patchable at runtime (for instance, to redirect control).
Right now only one patchability scheme is supported,
`"prologue-short-redirect"`, but this can be expanded in the future.
Reviewers: joker.eph, rnk, echristo, dberris
Subscribers: joker.eph, echristo, mcrosier, llvm-commits
Differential Revision: http://reviews.llvm.org/D19046
llvm-svn: 266715
Use a worklist instead of recursing through MDNode operands in
ValueEnumerator. The actual record output order has changed slightly,
but otherwise there's no functionality change.
I had to update test/Bitcode/metadata-function-blocks.ll. I renumbered
nodes so they continue to match the implicit record ids.
llvm-svn: 266709
When we suppress linkage names, for a non-inlined subprogram the name
can still be found in the object-file symbol table, because we have
the code address of the subprogram. This is not necessarily the case
for an inlined subprogram, so we still want to emit the linkage name
in the DWARF. Put this on the abstract-origin DIE because it's common
to all inlined instances.
Differential Revision: http://reviews.llvm.org/D18706
llvm-svn: 266692
The fast register-allocator cannot cope with inter-block dependencies without
spilling. This is fine for ldrex/strex loops coming from atomicrmw instructions
where any value produced within a block is dead by the end, but not for
cmpxchg. So we lower a cmpxchg at -O0 via a pseudo-inst that gets expanded
after regalloc.
Fortunately this is at -O0 so we don't have to care about performance. This
simplifies the various axes of expansion considerably: we assume a strong
seq_cst operation and ensure ordering via the always-present DMB instructions
rather than v8 acquire/release instructions.
Should fix the 32-bit part of PR25526.
llvm-svn: 266679
Summary:
Calls to @llvm.experimental.deoptimize are expected to "never execute",
so optimize them as such.
Reviewers: chandlerc
Subscribers: junbuml, mcrosier, llvm-commits
Differential Revision: http://reviews.llvm.org/D19095
llvm-svn: 266654
Also,
- Skip pass if machine module does not have debug info
- Minor comment changes
- Added test
Differential Revision: http://reviews.llvm.org/D19079
llvm-svn: 266626
The root of the problem was that findMainViewFileID(File, Function)
could return some ID for any given file, even though that file
was not the main file for that function.
This patch ensures that the result of this function is conformed
with the result of findMainViewFileID(Function).
This commit reapplies r266436, which was reverted by r266458,
with the .covmapping file serialized in v1 format.
Differential Revision: http://reviews.llvm.org/D18787
llvm-svn: 266620
This reverts commit r266477.
This commit introduces cyclic dependency. This commit has "Analysis" depend on "ProfileData",
while "ProfileData" depends on "Object", which depends on "BitCode", which
depends on "Analysis".
llvm-svn: 266619
Order should match the sp3 syntax, where destination (simm16 denoting the hwreg) is coming first.
Differential Revision: http://reviews.llvm.org/D19161
llvm-svn: 266617
Summary:
When clang is given -save-temps or -via-file-asm, any inline assembly in
the source is parsed twice. Once by the compiler, and again by the
assembler. We must take care to ensure that this doesn't lead to
double-filling delay slots.
Reviewers: sdardis, vkalintiris
Subscribers: dsanders, sdardis, llvm-commits
Differential Revision: http://reviews.llvm.org/D19166
llvm-svn: 266608
This required changing several places to print VT enums as strings instead of raw ints since the proper method to use to print became ambiguous. This is probably an improvement anyway.
This also appears to save ~8K from an x86 self host build of llc.
llvm-svn: 266562
There's a hole in the verifier right now: if a module has no compile
units, it never checks that all the string-based DITypeRefs get
resolved. As a result, this testcase didn't fail the verifier, even
there were references to `!"has-uuid"` instead of `!"uuid"` (the former
was a composite type's 'name:' field, the latter its 'identifier:'
field).
I'm currently working on removing string-based type refs entirely, and
this testcase started failing (because the upgrade script can't resolve
the type refs). Rather than fixing the (about-to-be-removed) hole in
the verifier, I'm just going to fix the test so that my upgrade script
handles it.
llvm-svn: 266553
I accidentally replaced `mayBeOverridden` with `!isInterposable`.
Remove the negation and add a test case that would've caught this.
Many thanks to Håkan Hjort for spotting this!
llvm-svn: 266551
Rather than relying on the structural equivalence of DICompositeType to
merge type definitions, use an explicit map on the LLVMContext that
LLParser and BitcodeReader consult when constructing new nodes.
Each non-forward-declaration DICompositeType with a non-empty
'identifier:' field is stored/loaded from the type map, and the first
definiton will "win".
This map is opt-in: clients that expect ODR types from different modules
to be merged must call LLVMContext::ensureDITypeMap.
- Clients that just happen to load more than one Module in the same
LLVMContext won't magically merge types.
- Clients (like LTO) that want to continue to merge types based on ODR
identifiers should opt-in immediately.
I have updated LTOCodeGenerator.cpp, the two "linking" spots in
gold-plugin.cpp, and llvm-link (unless -disable-debug-info-type-map) to
set this.
With this in place, it will be straightforward to remove the DITypeRef
concept (i.e., referencing types by their 'identifier:' string rather
than pointing at them directly).
llvm-svn: 266549
Merge members that are describing the same member of the same ODR type,
even if other bits differ. If the file or line differ, we don't care;
if anything else differs, it's an ODR violation (and we still don't
really care).
For DISubprogram declarations, this looks at the LinkageName and Scope.
For DW_TAG_member instances of DIDerivedType, this looks at the Name and
Scope. In both cases, we know that the Scope follows ODR rules if it
has a non-empty identifier.
llvm-svn: 266548
Split up the long RUN and clarify the CHECK lines:
- Explicitly confirm there are no other subprograms inside of "A".
- Remove checks for "bar" and "baz", which were just implicitly
checking that there were no other subprograms inside of "A".
This prepares for adding a RUN line which links the two files in the
opposite direction.
llvm-svn: 266543
To be able to work accurately on the reference graph when taking
decision about internalizing, promoting, renaming, etc. We need
to have the alias information explicit.
Differential Revision: http://reviews.llvm.org/D18836
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 266517
At the moment almost every lit.site.cfg.in contains two lines comment:
## Autogenerated by LLVM/Clang configuration.
# Do not edit!
The patch adds variable LIT_SITE_CFG_IN_HEADER, that is replaced from
configure_lit_site_cfg with the note and some useful information.
llvm-svn: 266515
This resolves more frame indexes early and folds
the immediate offsets into the scratch mubuf instructions.
This cleans up a lot of the mess that's currently emitted,
such as emitting add 0s and repeatedly initializing the same
register to 0 when spilling.
llvm-svn: 266508
Because HoistSpillHelper::hoistAllSpills is called in postOptimization, before the
patch we didn't want LiveRangeEdit::eliminateDeadDefs to call splitSeparateComponents
and generate unassigned new vregs. However, skipping splitSeparateComponents will make
verify-machineinstrs unhappy, so I remove the early return, and use
HoistSpillHelper::LRE_DidCloneVirtReg to assign physreg/stackslot for those new vregs.
In addition, some code reorganization to make class HoistSpillHelper privately inheriting
from LiveRangeEdit::Delegate possible. This is to be consistent with class RAGreedy and
class RegisterCoalescer.
Differential Revision: http://reviews.llvm.org/D19142
llvm-svn: 266489
Allow explicit section for indirectly called functions in cfi-icall.
Jumptables for functions in the same type class must be contiguous, so they
always go to the default text section.
Fixes PR25079.
llvm-svn: 266486
After r245976, LLVM will skip the last bit test case if knows it will always be
true. However, we would still erroneously update PHI nodes with incoming values
from the MBB that would perform the final bit test, causing -verify-machineinstrs
to fail.
llvm-svn: 266479
Adds an interface to get ProfileSummary for a module and makes InlineCost use ProfileSummary to get max function count.
Differential Revision: http://reviews.llvm.org/D18622
llvm-svn: 266477
Divisions by a constant can be converted into multiplies which are usually
cheaper, but this isn't possible if the constant gets separated (particularly
in loops). Fix this by telling ConstantHoisting that the immediate in a DIV is
cheap.
I considered making the check generic, but neither AArch64 (strangely) nor x86
showed any benefit on the tests I had.
llvm-svn: 266464
This improves AA in the MI schduler when reason about paired instructions.
Phabricator Revision: http://reviews.llvm.org/D17098
PR26358
llvm-svn: 266462
InstCombine wants to optimize compares of calls to fabs with zero.
However, we didn't have the necessary legality checking to verify that
the function call had the same behavior as fabs.
llvm-svn: 266452
Currently each Function points to a DISubprogram and DISubprogram has a
scope field. For member functions the scope is a DICompositeType. DIScopes
point to the DICompileUnit to facilitate type uniquing.
Distinct DISubprograms (with isDefinition: true) are not part of the type
hierarchy and cannot be uniqued. This change removes the subprograms
list from DICompileUnit and instead adds a pointer to the owning compile
unit to distinct DISubprograms. This would make it easy for ThinLTO to
strip unneeded DISubprograms and their transitively referenced debug info.
Motivation
----------
Materializing DISubprograms is currently the most expensive operation when
doing a ThinLTO build of clang.
We want the DISubprogram to be stored in a separate Bitcode block (or the
same block as the function body) so we can avoid having to expensively
deserialize all DISubprograms together with the global metadata. If a
function has been inlined into another subprogram we need to store a
reference the block containing the inlined subprogram.
Attached to https://llvm.org/bugs/show_bug.cgi?id=27284 is a python script
that updates LLVM IR testcases to the new format.
http://reviews.llvm.org/D19034
<rdar://problem/25256815>
llvm-svn: 266446
This is almost identical to:
http://reviews.llvm.org/rL264527
This doesn't solve PR27344; it just allows the profile weights to survive.
To solve the bug, we need to use the profile weights in the backend.
llvm-svn: 266442
Summary:
Without MMOs, the callee-save load/store instructions were treated as
volatile by the MI post-RA scheduler and AArch64LoadStoreOptimizer.
Reviewers: t.p.northover, mcrosier
Subscribers: aemerson, rengolin, mcrosier, llvm-commits
Differential Revision: http://reviews.llvm.org/D17661
llvm-svn: 266439
[PPC] Previously when casting generic loads to LXV2DX/ST instructions we
would leave the original load return type in place allowing for an
assertion failure when we merge two equivalent LXV2DX nodes with
different types.
This fixes PR27350.
Reviewers: nemanjai
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D19133
llvm-svn: 266438
Perform store clustering just like load clustering. This change add
StoreClusterMutation in machine-scheduler. To control StoreClusterMutation,
added enableClusterStores() in TargetInstrInfo.h. This is enabled only on
AArch64 for now.
This change also add support for unscaled stores which were not handled in
getMemOpBaseRegImmOfs().
llvm-svn: 266437
The root of the problem was that findMainViewFileID(File, Function)
could return some ID for any given file, even though that file
was not the main file for that function.
This patch ensures that the result of this function is conformed
with the result of findMainViewFileID(Function).
Differential Revision: http://reviews.llvm.org/D18787
llvm-svn: 266436
Summary:
In the added test-case, the atomic instruction feeds into a non-machine
CopyToReg node which hasn't been selected yet, so guard against
non-machine opcodes here.
Reviewers: arsenm, tstellarAMD
Subscribers: arsenm, llvm-commits
Differential Revision: http://reviews.llvm.org/D19043
llvm-svn: 266433
Summary:
This lets us add this pass to the IR pass manager unconditionally; it
will simply not do anything on targets without branch divergence.
Reviewers: tra
Subscribers: llvm-commits, jingyue, rnk, chandlerc
Differential Revision: http://reviews.llvm.org/D18625
llvm-svn: 266398
If the size of an AST entry changes, we also need to make sure we perform
necessary alias set merges, as the new size may overlap pointers in other sets.
We happen to run into this with memset, because memset allows an entry for a
i8* pointer to have a decidedly non-i8 size.
This fixes PR27262.
Differential Revision: http://reviews.llvm.org/D18939
llvm-svn: 266381
Some SIMD implementations are not IEEE-754 compliant, for example ARM's NEON.
This patch teaches the loop vectorizer to only allow transformations of loops
that either contain no floating-point operations or have enough allowance
flags supporting lack of precision (ex. -ffast-math, Darwin).
For that, the target description now has a method which tells us if the
vectorizer is allowed to handle FP math without falling into unsafe
representations, plus a check on every FP instruction in the candidate loop
to check for the safety flags.
This commit makes LLVM behave like GCC with respect to ARM NEON support, but
it stops short of fixing the underlying problem: sub-normals. Neither GCC
nor LLVM have a flag for allowing sub-normal operations. Before this patch,
GCC only allows it using unsafe-math flags and LLVM allows it by default with
no way to turn it off (short of not using NEON at all).
As a first step, we push this change to make it safe and in sync with GCC.
The second step is to discuss a new sub-normal's flag on both communitues
and come up with a common solution. The third step is to improve the FastMath
flags in LLVM to encode sub-normals and use those flags to restrict NEON FP.
Fixes PR16275.
llvm-svn: 266363
https://llvm.org/bugs/show_bug.cgi?id=27105
We can check if all bits outside of a constant mask are set with a
single constant.
As noted in the bug report, although this form should be considered the
canonical IR, backends may want to transform this into an 'andn' / 'andc'
comparison against zero because that could be a single machine instruction.
Differential Revision: http://reviews.llvm.org/D18842
llvm-svn: 266362
Summary:
This adds the necessary target code to be able to run the ir translator.
Lowering function arguments and returns is a nop and there is no support
for RegBankSelect.
Reviewers: arsenm, qcolombet
Subscribers: arsenm, joker.eph, vkalintiris, llvm-commits
Differential Revision: http://reviews.llvm.org/D19077
llvm-svn: 266356
Summary:
If a PHI has an incoming undef, we can pretend that it is equal to one
non-undef, non-self incoming value.
This is particularly relevant in combination with the StructurizeCFG
pass, which introduces PHI nodes with undefs. Previously, this lead to
branch conditions that were uniform before StructurizeCFG to become
non-uniform afterwards, which confused the SIAnnotateControlFlow
pass.
This fixes a crash when Mesa radeonsi compiles a shader from
dEQP-GLES3.functional.shaders.switch.switch_in_for_loop_dynamic_vertex
Reviewers: arsenm, tstellarAMD, jingyue
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D19013
llvm-svn: 266347
Summary:
This pass is unnecessary and overly conservative. It was motivated by
situations like
def %vreg0:SGPR_32
...
if-block:
..
def %vreg1:SGPR_32
...
else-block:
...
use %vreg0:SGPR_32
...
and similar situations with uses after the non-uniform control flow, where
we are not allowed to assign %vreg0 and %vreg1 to the same physical register,
even though in the original, thread/workitem-based CFG, it looks like the
live ranges of these registers do not overlap.
However, by the time register allocation runs, we have moved to a wave-based
CFG that accurately represents the fact that the wave may run through both
the if- and the else-block. So the live ranges of %vreg0 and %vreg1 already
overlap even without the SIFixSGPRLiveRanges pass.
In addition to proving this change correct, I have tested it with Piglit
and a small number of other tests.
Reviewers: arsenm, tstellarAMD
Subscribers: MatzeB, arsenm, llvm-commits
Differential Revision: http://reviews.llvm.org/D19041
llvm-svn: 266345
FastRegAlloc works only at the basic-block level and spills all live-out
registers. Unfortunately for a stack-based cmpxchg near the spill slots, this
can perpetually clear the exclusive monitor, which means the cmpxchg will never
succeed.
I believe the only way to handle this within LLVM is by expanding the loop
post-regalloc. We don't want this in general because it severely limits the
optimisations that can be done, so we limit this to -O0 compilations.
It's an ugly hack, and about the one good point in the whole mess is that we
can treat all cmpxchg operations in the most naive way possible (seq_cst, no
clrex faff) without affecting correctness.
Should fix PR25526.
llvm-svn: 266339
Summary:
For GL_ARB_compute_shader we need to support workgroup sizes of at least 1024. However, if we want to allow large workgroup sizes, we may need to use less registers, as we have to run more waves per SIMD.
This patch adds an attribute to specify the maximum work group size the compiled program needs to support. It defaults, to 256, as that has no wave restrictions.
Reducing the number of registers available is done similarly to how the registers were reserved for chips with the sgpr init bug.
Reviewers: mareko, arsenm, tstellarAMD, nhaehnle
Subscribers: FireBurn, kerberizer, llvm-commits, arsenm
Differential Revision: http://reviews.llvm.org/D18340
Patch By: Bas Nieuwenhuizen
llvm-svn: 266337
Summary:
The code previously always used s1 as it was using the user + system SGPR
information for compute kernels. This is incorrect for Mesa shaders though,
The register should be the next SGPR after all user and system SGPR's.
We use that Mesa adds arguments for all input and system SGPR's and
take the next available SGPR for the scratch wave offset register.
Signed-off-by: Bas Nieuwenhuizen <bas@basnieuwenhuizen.nl>
Reviewers: mareko, arsenm, nhaehnle, tstellarAMD
Subscribers: qcolombet, arsenm, llvm-commits
Differential Revision: http://reviews.llvm.org/D18941
Patch By: Bas Nieuwenhuizen
llvm-svn: 266336
Summary:
Add a print method to Predicated Scalar Evolution which prints all interesting
transformations done by PSE.
Loop Access Analysis will now print this as part of the analysis output.
We now use this to check the exact expression transformations that were done
by PSE in LAA.
The additional checking also acts as white-box testing for the getAsAddRec method.
Reviewers: anemet, sanjoy
Subscribers: sanjoy, mzolotukhin, llvm-commits
Differential Revision: http://reviews.llvm.org/D18792
llvm-svn: 266334
Alias 'jic $reg, 0' to 'jrc $reg' and 'jialc $reg, 0' to 'jalrc $reg' like
binutils.
This patch was previous committed as r266055 as seemed to have caused some spurious
test failures. They did not reappear after further local testing.
llvm-svn: 266301
Summary:
The only difference between the removed tests and the pre-existing
ones, is the materialization of the zero constant, which shouldn't
matter for these cases.
Reviewers: dsanders, sdardis
Subscribers: dsanders, sdardis, llvm-commits
Differential Revision: http://reviews.llvm.org/D18693
llvm-svn: 266285
The behavior of {MIN,MAX}NAN differs from that of {MIN,MAX}NUM when only
one of the inputs is NaN: -NUM will return the non-NaN argument while
-NAN would return NaN.
It is desirable to lower to @llvm.{min,max}num to -NAN if they don't
have a native instruction for -NUM. Notably, ARMv7 NEON's vmin has the
-NAN semantics.
N.B. Of course, it is only safe to do this if the intrinsic call is
marked nnan.
llvm-svn: 266279
At some point, ARM stopped getting any benefit from ConstantHoisting because
the pass called a different variant of getIntImmCost. Reimplementing the
correct variant revealed some problems, however:
+ ConstantHoisting was modifying switch statements. This is simply invalid,
the cases must remain integer constants no matter the notional cost.
+ ConstantHoisting was mangling alloca instructions in the entry block. These
should be handled by FrameLowering, so constants actually have a cost of 0.
Worse, the resulting bitcasts meant they became dynamic allocas.
rdar://25707382
llvm-svn: 266260
It is very likely that the swiftself parameter is alive throughout most
functions function so putting it into a callee save register should
avoid spills for the callers with only a minimum amount of extra spills
in the callees.
Currently the generated code is correct but unnecessarily spills and
reloads arguments passed in callee save registers, I will address this
in upcoming patches.
This also adds a missing check that for tail calls the preserved value
of the caller must be the same as the callees parameter.
Differential Revision: http://reviews.llvm.org/D18901
llvm-svn: 266253
It is very likely that the swiftself parameter is alive throughout most
functions function so putting it into a callee save register should
avoid spills for the callers with only a minimum amount of extra spills
in the callees.
Currently the generated code is correct but unnecessarily spills and
reloads arguments passed in callee save registers, I will address this
in upcoming patches.
This also adds a missing check that for tail calls the preserved value
of the caller must be the same as the callees parameter.
Differential Revision: http://reviews.llvm.org/D18902
llvm-svn: 266252
It is very likely that the swiftself parameter is alive throughout most
functions function so putting it into a callee save register should
avoid spills for the callers with only a minimum amount of extra spills
in the callees.
Currently the generated code is correct but unnecessarily spills and
reloads arguments passed in callee save registers, I will address this
in upcoming patches.
This also adds a missing check that for tail calls the preserved value
of the caller must be the same as the callees parameter.
Differential Revision: http://reviews.llvm.org/D19007
llvm-svn: 266251
And update the existing test cases in test/Object/macho-invalid.test
to use llvm-objdump with the -macho option to produce these
error messages and stop producing the generic "Invalid data
was encountered while parsing the file" message.
Working from the beginning of the file, if the mach header is too large for
the size of the file and then if the load commands that follow extend past
the end of the file these two errors now generate correct error messages.
Both of these have existing test cases in test/Object/macho-invalid.test .
But the first with macho-invalid-header it will never trigger the error message
"mach header extends past the end of the file" using any of the llvm tools as
they all use identify_magic() which rejects files with the correct magic number
that are too small in size. So I tested this by hacking that code and seeing the
error message down in parseHeader() really does happen. So in case there
is ever code in llvm that directly calls createMachOObjectFile() this error
message will be correctly produced.
The second error message of "load commands extends past the end of the file"
is triggered by a number of existing tests cases in test/Object/macho-invalid.test .
Also other tests trigger different error messages now like "ilocalsym plus
nlocalsym in LC_DYSYMTAB load command extends past the end of the
symbol table".
There are two existing test cases that still get the "Invalid data was encountered ..."
error messages that I will tackle next. But they will involve a bit of pluming an
Expect<...> up through the call stack and I want to do those as separate changes.
FYI, for those test cases that were trying to test specific errors that now get
different errors I’ll fix those in follow on changes and create new test cases
for those so they test the error they were meant to test.
llvm-svn: 266248
Since we can't emit diagnostics for missing "jmp 1f" labels until the end of
the file, we need to be able to restore the context used to calculate
file/line. This is basically the "# line file" directive that's being used at
the time the expression is seen.
rdar://25706972
llvm-svn: 266238
LLVM optimization passes may reduce a profiled target expression
to a constant. Removing runtime calls at such instrumentation points
would help speedup the runtime of the instrumented program.
llvm-svn: 266229
This patch corresponds to review:
http://reviews.llvm.org/D17850
This patch implements the following instructions:
cmprb, cmpeqb, cnttzw, cnttzw., cnttzd, cnttzd.
llvm-svn: 266228
Disable LDP/STP for quads on Exynos M1 as they are not as efficient as pairs
of regular LDR/STR.
Patch by Abderrazek Zaafrani <a.zaafrani@samsung.com>.
llvm-svn: 266223
This patch fixes a bug (PR26827) when using anti-aliasing in store
merging. This sets the chain users of the component stores to point to
the new store instead of the component stores chain parent.
Reviewers: jyknight
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D18909
llvm-svn: 266217
Summary:
To be able to work accurately on the reference graph when taking decision
about internalizing, promoting, renaming, etc. We need to have the alias
information explicit.
Reviewers: tejohnson
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D18836
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 266214
Tests added along with implemented feature.
Note that there is a small leftover of unecessary MI sheduling issue
(more info in the review). CodeGen/AMDGPU/salu-to-valu.ll updated to fix
the false regression.
TODO: Support for TTMP quads, comma-separated syntax in "[]" and more.
Differential Revision: http://reviews.llvm.org/D17825
llvm-svn: 266205
Summary:
This is a special case for MIPS64 because the architecture requires
properly 32-bit sign-extended values in the register containers.
Additionaly, we merge consecutive trunc + AssertZExt nodes in order
to avoid unnecessary sign-extensions when the extension comes from a
type smaller than i32.
Reviewers: dsanders
Subscribers: dsanders, sdardis, llvm-commits
Differential Revision: http://reviews.llvm.org/D18893
llvm-svn: 266203
This patch fixes calculating of builtin_object_size if it depends on a
condition. Before this patch compiler did not know how to calculate the
object size when it finds a condition that cannot be eliminated.
This patch enables calculating of builtin_object_size even in case when
condition cannot be eliminated by choosing minimum or maximum value as a
result from condition. Choosing minimum or maximum value from condition
is based on the second argument of __builtin_object_size function.
Patch by Strahinja Petrovic.
Differential Revision: http://reviews.llvm.org/D18438
llvm-svn: 266193