This is no-functional-change-intended.
This is repackaging the functionality of D30333 (defer switch-to-lookup-tables) and
D35411 (defer folding unconditional branches) with pass parameters rather than a named
"latesimplifycfg" pass. Now that we have individual options to control the functionality,
we could decouple when these fire (but that's an independent patch if desired).
The next planned step would be to add another option bit to disable the sinking transform
mentioned in D38566. This should also make it clear that the new pass manager needs to
be updated to limit simplifycfg in the same way as the old pass manager.
Differential Revision: https://reviews.llvm.org/D38631
llvm-svn: 316835
Summary:
Previously, we would emit error messages like "IO failure on output
stream". This change causes use to include information about what
actually went wrong, e.g. "No space left on device".
Reviewers: sunfish, rnk
Reviewed By: rnk
Subscribers: mehdi_amini, llvm-commits, hiraditya
Differential Revision: https://reviews.llvm.org/D39203
llvm-svn: 316404
Move error handling code next to the code that returns the error,
and change the error message in order to distinguish it from a similar
error message elsewhere in this file.
llvm-svn: 314745
This came out of a recent discussion on llvm-dev
(https://reviews.llvm.org/D38042). Currently the Verifier will strip
the debug info metadata from a module if it finds the dbeug info to be
malformed. This feature is very valuable since it allows us to improve
the Verifier by making it stricter without breaking bcompatibility,
but arguable the Verifier pass should not be modifying the IR. This
patch moves the stripping of broken debug info into AutoUpgrade
(UpgradeDebugInfo to be precise), which is a much better location for
this since the stripping of malformed (i.e., produced by older, buggy
versions of Clang) is a (harsh) form of AutoUpgrade.
This change is mostly NFC in nature, the one big difference is the
behavior when LLVM module passes are introducing malformed debug
info. Prior to this patch, a NoAsserts build would have printed a
warning and stripped the debug info, after this patch the Verifier
will report a fatal error. I believe this behavior is actually more
desirable anyway.
Differential Revision: https://reviews.llvm.org/D38184
llvm-svn: 314699
Summary:
ld64 on OSX uses the old ThinLTOCodegenerator API. When two modules have the same name in an archive (valid archive), a name collision happens for the modules' buffer identifiers.
This PR resolves this, by suffixing the module name with an increasing number such that the identifiers are guaranteed to be unique.
For a similar fix in LLD, see https://reviews.llvm.org/D25495
Reviewers: mehdi_amini, tejohnson
Reviewed By: mehdi_amini
Subscribers: inglorion, eraman, llvm-commits
Differential Revision: https://reviews.llvm.org/D37961
llvm-svn: 313488
It enables OptimizationRemarkEmitter::allowExtraAnalysis and MachineOptimizationRemarkEmitter::allowExtraAnalysis to return true not only for -fsave-optimization-record but when specific remarks are requested with
command line options.
The diagnostic handler used to be callback now this patch adds a class
DiagnosticHandler. It has virtual method to provide custom diagnostic handler
and methods to control which particular remarks are enabled.
However LLVM-C API users can still provide callback function for diagnostic handler.
llvm-svn: 313390
It enables OptimizationRemarkEmitter::allowExtraAnalysis and MachineOptimizationRemarkEmitter::allowExtraAnalysis to return true not only for -fsave-optimization-record but when specific remarks are requested with
command line options.
The diagnostic handler used to be callback now this patch adds a class
DiagnosticHandler. It has virtual method to provide custom diagnostic handler
and methods to control which particular remarks are enabled.
However LLVM-C API users can still provide callback function for diagnostic handler.
llvm-svn: 313382
Not all targets support the use of absolute symbols to export
constants. In particular, ARM has a wide variety of constant encodings
that cannot currently be relocated by linkers. So instead of exporting
the constants using symbols, export them directly in the summary.
The values of the constants are left as zeroes on targets that support
symbolic exports.
This may result in more cache misses when targeting those architectures
as a result of arbitrary changes in constant values, but this seems
somewhat unavoidable for now.
Differential Revision: https://reviews.llvm.org/D37407
llvm-svn: 312967
I empirically verified that open files can in fact be renamed on
Windows with sys::fs::rename, so remove the incorrect code and comment.
llvm-svn: 312683
Summary:
Fixed PR33966.
CFI code generation for users (not just callers) of a function depends
on whether this function has a jumptable entry or not. This
information needs to be encoded in of thinlto cache key.
We filter the jumptable list against functions that are actually
referenced in the current module.
Subscribers: mehdi_amini, inglorion, eraman, hiraditya
Differential Revision: https://reviews.llvm.org/D36346
llvm-svn: 310536
IMHO it is an antipattern to have a enum value that is Default.
At any given piece of code it is not clear if we have to handle
Default or if has already been mapped to a concrete value. In this
case in particular, only the target can do the mapping and it is nice
to make sure it is always done.
This deletes the two default enum values of CodeModel and uses an
explicit Optional<CodeModel> when it is possible that it is
unspecified.
llvm-svn: 309911
Summary: In ThinLTO backend compile, OPTOptions are not set so that the ICP in ThinLTO backend does not know if it is a SamplePGO build, in which profile count needs to be annotated directly on call instructions. This patch cleaned up the PGOOptions handling logic and passes down PGOOptions to ThinLTO backend.
Reviewers: chandlerc, tejohnson, davidxl
Reviewed By: chandlerc
Subscribers: sanjoy, llvm-commits, mehdi_amini
Differential Revision: https://reviews.llvm.org/D36052
llvm-svn: 309780
If the LowerTypeTests pass decides to add a function to a jump
table for CFI, it will add its name to the set cfiFunctionDefs,
which among other things will cause the function to be renamed in
the ThinLTO backend.
One other thing that we must do with such functions is to not
internalize them, because the jump table in the full LTO object will
contain a reference to the actual function body in the ThinLTO object.
This patch handles that by ensuring that we export any functions
whose names appear in the cfiFunctionDefs set.
Fixes PR33831.
Differential Revision: https://reviews.llvm.org/D35605
llvm-svn: 308504
This is the same as r304719 but for ThinLTO.
The substantial difference is that in this case we don't have
whole visibility, just the summary.
In the LTO case, when we got the resolution for the input file we
could just see if the linker told us whether a symbol was linker
redefined (using --wrap or --defsym) and switch the linkage directly
for the GV.
Here, we have the summary. So, we record that the linkage changed
from <whatever it was> to $weakany to prevent IPOs across this symbol
boundaries and actually just switch the linkage at FunctionImport time.
This patch should also fixes the lld bits (as all the scaffolding for
communicating if a symbol is linker redefined should be there & should
be the same), but I'll make sure to add some tests there as well.
Fixes PR33192.
Differential Revision: https://reviews.llvm.org/D35064
llvm-svn: 307303
Summary:
To enable profile hotness information in diagnostics output, Clang takes
the option `-fdiagnostics-show-hotness` -- that's "diagnostics", with an
"s" at the end. Clang also defines `CodeGenOptions::DiagnosticsWithHotness`.
LLVM, on the other hand, defines
`LLVMContext::getDiagnosticHotnessRequested` -- that's "diagnostic", not
"diagnostics". It's a small difference, but it's confusing, typo-inducing, and
frustrating.
Add a new method with the spelling "diagnostics", and "deprecate" the
old spelling.
Reviewers: anemet, davidxl
Reviewed By: anemet
Subscribers: llvm-commits, mehdi_amini
Differential Revision: https://reviews.llvm.org/D34864
llvm-svn: 306848
Summary:
When linking a regular LTO module, if it has any non-prevailing values
(dropped to available_externally) in comdats, we need to do more than
just remove those values from their comdat. We also remove all values
from that comdat, so as to avoid leaving an incomplete comdat.
This is necessary in case we are compiling in mixed regular and ThinLTO
mode, since the resulting regularLTO native object is always linked into
the final binary first. We need to prevent the linker from selecting an
incomplete comdat that was not the prevailing copy.
Fixes PR32980.
Reviewers: pcc, rafael
Subscribers: mehdi_amini, david2050, llvm-commits, inglorion
Differential Revision: https://reviews.llvm.org/D34803
llvm-svn: 306826
If a regular LTO module has a summary index, then instead of linking
it into the combined regular LTO module right away, add it to the
combined summary index and associate it with a special module that
represents the combined regular LTO module.
Any such modules are linked during LTO::run(), at which time we use
the results of summary-based dead stripping to control whether to
link prevailing symbols.
Differential Revision: https://reviews.llvm.org/D33922
llvm-svn: 305482
This code now lives in lib/Object. The idea is that it can now be reused by
IRObjectFile among other things.
Differential Revision: https://reviews.llvm.org/D31921
llvm-svn: 304958
I did this a long time ago with a janky python script, but now
clang-format has built-in support for this. I fed clang-format every
line with a #include and let it re-sort things according to the precise
LLVM rules for include ordering baked into clang-format these days.
I've reverted a number of files where the results of sorting includes
isn't healthy. Either places where we have legacy code relying on
particular include ordering (where possible, I'll fix these separately)
or where we have particular formatting around #include lines that
I didn't want to disturb in this patch.
This patch is *entirely* mechanical. If you get merge conflicts or
anything, just ignore the changes in this patch and run clang-format
over your #include lines in the files.
Sorry for any noise here, but it is important to keep these things
stable. I was seeing an increasing number of patches with irrelevant
re-ordering of #include lines because clang-format was used. This patch
at least isolates that churn, makes it easy to skip when resolving
conflicts, and gets us to a clean baseline (again).
llvm-svn: 304787
procedural optimizations to prevent dropping symbols and allow the linker
to process re-directs.
PR33145: --wrap doesn't work with lto.
Differential Revision: https://reviews.llvm.org/D33621
llvm-svn: 304719
This way dead stripping results are recorded in combined summary and
can be used in regular LTO passes.
Differential Revision: https://reviews.llvm.org/D33615
llvm-svn: 304577
Summary:
As we teach Clang to use ThinkLTO + new PM, it's good for the users to
inject through Config, instead of setting a flag in the LTOBackend
library. Move the flag to llvm-lto2.
As it moves to llvm-lto2, a new name -use-new-pm seems simpler and as
clear.
Reviewers: davide, tejohnson
Subscribers: mehdi_amini, Prazek, inglorion, eraman, chandlerc, llvm-commits
Differential Revision: https://reviews.llvm.org/D33799
llvm-svn: 304492
Replace GVFlags::LiveRoot with GVFlags::Live and use that instead of
all the DeadSymbols sets. This is refactoring in order to make
liveness information available in the RegularLTO pipeline.
llvm-svn: 304466
Based on the original patch by Davide, but I've adjusted the API exposed
to just be different entry points rather than exposing more state
parameters. I've factored all the common logic out so that we don't have
any duplicate pipelines, we just stitch them together in different ways.
I think this makes the build easier to reason about and understand.
This adds a direct method for getting the module simplification pipeline
as well as a method to get the optimization pipeline. While not my
express goal, this seems nice and gives a good place comment about the
restrictions that are imposed on them.
I did make some minor changes to the way the pipelines are structured
here, but hopefully not ones that are significant or controversial:
1) I sunk the PGO indirect call promotion to only be run when we have
PGO enabled (or as part of the special ThinLTO pipeline).
2) I made the extra GlobalOpt run in ThinLTO just happen all the time
and at a slightly more powerful place (before we remove available
externaly functions). This seems like general goodness and not a big
compile time sink, so it didn't make sense to *only* use it in
ThinLTO. Fewer differences in the pipeline makes everything simpler
IMO.
3) I hoisted the ThinLTO stop point pre-link above the the RPO function
attr inference. The RPO inference won't infer anything terribly
meaningful pre-link (recursiveness?) so it didn't make a lot of
sense. But if the placement of RPO inference starts to matter, we
should move it to the canonicalization phase anyways which seems like
a better place for it (and there is a FIXME to this effect!). But
that seemed a bridge too far for this patch.
If we ever need to parameterize these pipelines more heavily, we can
always sink the logic to helper functions with parameters to keep those
parameters out of the public API. But the changes above seemed minor
that we could possible get away without the parameters entirely.
I added support for parsing 'thinlto' and 'thinlto-pre-link' names in
pass pipelines to make it easy to test these routines and play with them
in larger pipelines. I also added a really basic manifest of passes test
that will show exactly how the pipelines behave and work as well as
making updates to them clear.
Lastly, this factoring does introduce a nesting layer of module pass
managers in the default pipeline. I don't think this is a big deal and
the flexibility of decoupling the pipelines seems easily worth it.
Differential Revision: https://reviews.llvm.org/D33540
llvm-svn: 304407
Prevailing symbol resolution is necessary for correctness. Without
this we can end up dropping a referenced linkonce symbol from the link.
Differential Revision: https://reviews.llvm.org/D33570
llvm-svn: 303939
This reapplies commit r303438 modified to not verify cross-imported
bitcode in FunctionImporter.
rdar://problem/31233625
Differential Revision: https://reviews.llvm.org/D33370
llvm-svn: 303470
compatible target triple
Currently, an assertion fails in ThinLTOCodeGenerator::addModule when
the target triple of the module being added doesn't match that of the
one stored in TMBuilder. This patch relaxes the constraint and makes
changes to allow target triples that only differ in their version
numbers on Apple platforms, similarly to what r228999 did.
rdar://problem/30133904
Differential Revision: https://reviews.llvm.org/D33291
llvm-svn: 303326
The information collected when requested by -time-passes is only printed when
llvm_shutdown is called at the moment. This means that when linking against the LTO
library dynamically and using the C interface, it is not possible to see the timing
information, because llvm_shutdown cannot be called. This change modifies the LTO
code generation functions for both regular LTO and thin LTO to explicitly print and
reset the timing information.
I have tested that this works with our proprietary linker. However, as this relies
on a specific method of building and linking against the LTO library, I'm not sure
how or if this can be tested in the LLVM testsuite.
Reviewed by: mehdi_amini
Differential Revision: https://reviews.llvm.org/D32803
llvm-svn: 303152
This function gives the wrong answer on some non-ELF platforms in some
cases. The function that does the right thing lives in Mangler.h. To try to
discourage people from using this function, give it a different name.
Differential Revision: https://reviews.llvm.org/D33162
llvm-svn: 303134
This fixes a ubsan bot failure after r302597, which made getProfileCount
non-static, but ended up invoking it on a null ProfileSummaryInfo object
in some cases from buildModuleSummaryIndex.
Most testing passed because the non-static getProfileCount currently
doesn't access any member variables, but I found this when testing a
follow on patch (D32877) that adds a member variable access.
llvm-svn: 302705
When profiling a no-op incremental link of Chromium I found that the functions
computeImportForFunction and computeDeadSymbols were consuming roughly 10% of
the profile. The goal of this change is to improve the performance of those
functions by changing the map lookups that they were previously doing into
pointer dereferences.
This is achieved by changing the ValueInfo data structure to be a pointer to
an element of the global value map owned by ModuleSummaryIndex, and changing
reference lists in the GlobalValueSummary to hold ValueInfos instead of GUIDs.
This means that a ValueInfo will take a client directly to the summary list
for a given GUID.
Differential Revision: https://reviews.llvm.org/D32471
llvm-svn: 302108
This is to prepare for an upcoming change which uses pointers instead of
GUIDs to represent references.
Differential Revision: https://reviews.llvm.org/D32469
llvm-svn: 301843
Marking them as used causes them to be considered visible outside of LTO. This
prevents the symbols from being internalized or discarded, either by GlobalDCE
or by summary-based dead stripping in ThinLTO.
This change makes it unnecessary to add these symbols to llvm.compiler.used
in the backend, as the symbols are kept alive by virtue of being external,
so remove the backend code that handles that.
Fixes PR32798.
Differential Revision: https://reviews.llvm.org/D32544
llvm-svn: 301438
Start using it in LLD to avoid needing to read bitcode again just to get the
target triple, and in llvm-lto2 to avoid printing symbol table information
that is inappropriate for the target.
Differential Revision: https://reviews.llvm.org/D32038
llvm-svn: 300300
This is a magic header file supported by the build system that provides a
single definition, LLVM_REVISION, containing an LLVM revision identifier,
if available. This functionality previously lived in the LTO library, but
I am moving it out to lib/Support because I want to also start using it in
lib/Object to create the IR symbol table.
This change also fixes a bug where LLVM_REVISION was never actually being
used in lib/LTO because the macro HAS_LLVM_REVISION was never defined (it
was misspelled as HAVE_SVN_VERSION_INC in lib/LTO/CMakeLists.txt, and was
only being defined in a non-existent file Version.cpp).
I also changed the code to use "git rev-parse --git-dir" to locate the .git
directory, instead of looking for it in the LLVM source root directory,
which makes this compatible with monorepos as well as git worktrees.
Differential Revision: https://reviews.llvm.org/D31985
llvm-svn: 300160
Summary: GlobalValue has two getGUID methods: an instance method and a static method. The static method takes a string, which is expected to be what GlobalValue::getRealLinkageName() would return. In LTO.cpp, we were not doing this consistently, sometimes passing an IR name instead. This change makes it so that we call getRealLinkageName() first, making the static getGUID return value consistent with the instance method. Without this change, compiling FileCheck with ThinLTO on Windows fails with numerous undefined symbol errors. With the change, it builds successfully.
Reviewers: pcc, rnk
Reviewed By: pcc
Subscribers: tejohnson, mehdi_amini, llvm-commits
Differential Revision: https://reviews.llvm.org/D31444
llvm-svn: 299268
Introduce symbol table data structures that can be potentially written to
disk, have the LTO library build those data structures using temporarily
constructed modules and redirect the LTO library implementation to go through
those data structures. This allows us to remove the LLVMContext and Modules
owned by InputFile.
With this change I measured a peak memory consumption decrease from 5.4GB to
2.8GB in a no-op incremental ThinLTO link of Chromium on Linux. The impact on
memory consumption is larger in COFF linkers where we are currently forced
to materialize all metadata in order to read linker options. Peak memory
consumption linking a large piece of Chromium for Windows with full LTO and
debug info decreases from >64GB (OOM) to 15GB.
Part of PR27551.
Differential Revision: https://reviews.llvm.org/D31364
llvm-svn: 299168
The first variant contains all current transformations except
transforming switches into lookup tables. The second variant
contains all current transformations.
The switch-to-lookup-table conversion results in code that is more
difficult to analyze and optimize by other passes. Most importantly,
it can inhibit Dead Code Elimination. As such it is often beneficial to
only apply this transformation very late. A common example is inlining,
which can often result in range restrictions for the switch expression.
Changes in execution time according to LNT:
SingleSource/Benchmarks/Misc/fp-convert +3.03%
MultiSource/Benchmarks/ASC_Sequoia/CrystalMk/CrystalMk -11.20%
MultiSource/Benchmarks/Olden/perimeter/perimeter -10.43%
and a couple of smaller changes. For perimeter it also results 2.6%
a smaller binary.
Differential Revision: https://reviews.llvm.org/D30333
llvm-svn: 298799
Pass const qualified summaries into importers and unqualified summaries into
exporters. This lets us const-qualify the summary argument to thinBackend.
Differential Revision: https://reviews.llvm.org/D31230
llvm-svn: 298534
This is a safeguard against data loss if the user specifies a directory
that is not a cache directory. Teach the existing cache pruning clients
to create files with appropriate names.
Differential Revision: https://reviews.llvm.org/D31109
llvm-svn: 298271
After the call to sys::fs::exists succeeds, indicating a cache hit, we call
AddFile and the client will open the file using the supplied path. If the
client is using cache pruning, there is a potential race between the pruner
and the client. To avoid this, change the caching API so that it provides
a MemoryBuffer to the client, and have clients use that MemoryBuffer where
possible.
This scheme won't work with the gold plugin because the plugin API expects a
file path. So we have the gold plugin use the buffer identifier as a path and
live with the race for now. (Note that the gold plugin isn't actually affected
by the problem at the moment because it doesn't support cache pruning.)
This effectively reverts r279883 modulo the change to use the existing path
in the gold plugin.
Differential Revision: https://reviews.llvm.org/D31063
llvm-svn: 298020
This fixes a race condition where another linker process can observe a
partially written file if we copy it from another file system, and allows
the link to be independent of the amount of free disk space in $TMPDIR.
Differential Revision: https://reviews.llvm.org/D31045
llvm-svn: 297970
Change the function that implements the pruning into a free function that
takes the policy as a struct argument.
Differential Revision: https://reviews.llvm.org/D31009
llvm-svn: 297907
Summary:
In a .symver assembler directive like:
.symver name, name2@@nodename
"name2@@nodename" should get the same symbol binding as "name".
While the ELF object writer is updating the symbol binding for .symver
aliases before emitting the object file, not doing so when the module
inline assembly is handled by the RecordStreamer is causing the wrong
behavior in *LTO mode.
E.g. when "name" is global, "name2@@nodename" must also be marked as
global. Otherwise, the symbol is skipped when iterating over the LTO
InputFile symbols (InputFile::Symbol::shouldSkip). So, for example,
when performing any *LTO via the gold-plugin, the versioned symbol
definition is not recorded by the plugin and passed back to the
linker. If the object was in an archive, and there were no other symbols
needed from that object, the object would not be included in the final
link and references to the versioned symbol are undefined.
The llvm-lto2 tests added will give an error about an unused symbol
resolution without the fix.
Reviewers: rafael, pcc
Reviewed By: pcc
Subscribers: mehdi_amini, llvm-commits
Differential Revision: https://reviews.llvm.org/D30485
llvm-svn: 297332
This set may affect code generation and is sensitive to link order (and
possibly in the future to the linker's choice of prevailing symbol), so we
need to include it.
Differential Revision: https://reviews.llvm.org/D30586
llvm-svn: 296907
Summary:
Add a field to LTO::Config, CGFileType, to select the file type to emit (object
or assembly). This is useful for testing and to implement -save-temps.
Reviewers: tejohnson, mehdi_amini, pcc
Reviewed By: mehdi_amini
Subscribers: davide, llvm-commits
Differential Revision: https://reviews.llvm.org/D29475
llvm-svn: 295226
This makes this code much more similar to what ThinLTO is
using (also API wise), so now we can probably use a single
code path instead of copying stuff around.
llvm-svn: 294792
Currently these flags are always the inverse of each other, so there is
no need to keep them separate.
Differential Revision: https://reviews.llvm.org/D29471
llvm-svn: 294016
This reverts commit r293970.
After more discussion, this belongs to the linker side and
there is no added value to do it at this level.
llvm-svn: 293993
When a symbol is not exported outside of the
DSO, it is can be hidden. Usually we try to internalize
as much as possible, but it is not always possible, for
instance a symbol can be referenced outside of the LTO
unit, or there can be cross-module reference in ThinLTO.
This is a recommit of r293912 after fixing build failures,
and a recommit of r293918 after fixing LLD tests.
Differential Revision: https://reviews.llvm.org/D28978
llvm-svn: 293970
Summary: Some compilers, including MSVC and Clang, allow linker options to be specified in source files. In the legacy LTO API, there is a getLinkerOpts() method that returns linker options for the bitcode module being processed. This change adds that method to the new API, so that the COFF linker can get the right linker options when using the new LTO API.
Reviewers: pcc, ruiu, mehdi_amini, tejohnson
Reviewed By: pcc
Differential Revision: https://reviews.llvm.org/D29207
llvm-svn: 293950
When a symbol is not exported outside of the
DSO, it is can be hidden. Usually we try to internalize
as much as possible, but it is not always possible, for
instance a symbol can be referenced outside of the LTO
unit, or there can be cross-module reference in ThinLTO.
This is a recommit of r293912 after fixing build failures.
Differential Revision: https://reviews.llvm.org/D28978
llvm-svn: 293918
When a symbol is not exported outside of the
DSO, it is can be hidden. Usually we try to internalize
as much as possible, but it is not always possible, for
instance a symbol can be referenced outside of the LTO
unit, or there can be cross-module reference in ThinLTO.
Differential Revision: https://reviews.llvm.org/D28978
llvm-svn: 293912
These linkages mean that the ultimately prevailing symbol will have the same
semantics as any non-prevailing copy of the symbol, so we are free to ignore
the linker's resolution.
Differential Revision: https://reviews.llvm.org/D29367
llvm-svn: 293865
Summary:
The LibFunc::Func enum holds enumerators named for libc functions.
Unfortunately, there are real situations, including libc implementations, where
function names are actually macros (musl uses "#define fopen64 fopen", for
example; any other transitively visible macro would have similar effects).
Strictly speaking, a conforming C++ Standard Library should provide any such
macros as functions instead (via <cstdio>). However, there are some "library"
functions which are not part of the standard, and thus not subject to this
rule (fopen64, for example). So, in order to be both portable and consistent,
the enum should not use the bare function names.
The old enum naming used a namespace LibFunc and an enum Func, with bare
enumerators. This patch changes LibFunc to be an enum with enumerators prefixed
with "LibFFunc_". (Unfortunately, a scoped enum is not sufficient to override
macros.)
There are additional changes required in clang.
Reviewers: rsmith
Subscribers: mehdi_amini, mzolotukhin, nemanjai, llvm-commits
Differential Revision: https://reviews.llvm.org/D28476
llvm-svn: 292848
Summary:
Allow non-ODR weak/linkonce non-prevailing copies to be marked
as available_externally in the index. Add support for dropping these to
declarations in the backend.
Reviewers: mehdi_amini, pcc
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D28806
llvm-svn: 292656
the latter to the Transforms library.
While the loop PM uses an analysis to form the IR units, the current
plan is to have the PM itself establish and enforce both loop simplified
form and LCSSA. This would be a layering violation in the analysis
library.
Fundamentally, the idea behind the loop PM is to *transform* loops in
addition to running passes over them, so it really seemed like the most
natural place to sink this was into the transforms library.
We can't just move *everything* because we also have loop analyses that
rely on a subset of the invariants. So this patch splits the the loop
infrastructure into the analysis management that has to be part of the
analysis library, and the transform-aware pass manager.
This also required splitting the loop analyses' printer passes out to
the transforms library, which makes sense to me as running these will
transform the code into LCSSA in theory.
I haven't split the unittest though because testing one component
without the other seems nearly intractable.
Differential Revision: https://reviews.llvm.org/D28452
llvm-svn: 291662
This has been fixed in the "new" LTO API used by Gold/LLD, this is
fixing the same issue in the libLTO API used by ld64 (amongst other)
llvm-svn: 291518
Summary:
Using the linker-supplied list of "preserved" symbols, we can compute
the list of "dead" symbols, i.e. the one that are not reachable from
a "preserved" symbol transitively on the reference graph.
Right now we are using this information to mark these functions as
non-eligible for import.
The impact is two folds:
- Reduction of compile time: we don't import these functions anywhere
or import the function these symbols are calling.
- The limited number of import/export leads to better internalization.
Patch originally by Mehdi Amini.
Reviewers: mehdi_amini, pcc
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D23488
llvm-svn: 291177
Summary:
When reading the metadata bitcode, create a type declaration when
possible for composite types when we are importing. Doing this in
the bitcode reader saves memory. Also it works naturally in the case
when the type ODR map contains a definition for the same composite type
because it was used in the importing module (buildODRType will
automatically use the existing definition and not create a type
declaration).
For Chromium built with -g2, this reduces the aggregate size of the
generated native object files by 66% (from 31G to 10G). It reduced
the time through the ThinLTO link and backend phases by about 20% on
my machine.
Reviewers: mehdi_amini, dblaikie, aprantl
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D27775
llvm-svn: 289993
Summary: ThinLTO needs to invoke SampleProfileLoader pass during link time in order to annotate profile correctly after module importing.
Reviewers: davidxl, mehdi_amini, tejohnson
Subscribers: pcc, davide, llvm-commits, mehdi_amini
Differential Revision: https://reviews.llvm.org/D27790
llvm-svn: 289957
Also, udpate the ~60 failing tests in the tree which did
not contain a valid datalayout.
This fixes PR31123. lld will be updated in a following patch,
immediately after this is committed.
Differential Revision: https://reviews.llvm.org/D27082
llvm-svn: 289719
Summary:
The motivation is to support better the -object_path_lto option on
Darwin. The linker needs to write down the generate object files on
disk for later use by lldb or dsymutil (debug info are not present
in the final binary). We're moving this into libLTO so that we can
be smarter when a cache is enabled and hard-link when possible
instead of duplicating the files.
Reviewers: tejohnson, deadalnix, pcc
Subscribers: dexonsmith, llvm-commits
Differential Revision: https://reviews.llvm.org/D27507
llvm-svn: 289631
Summary:
As discussed on mailing list, for ThinLTO importing we don't need
to import all the fields of the DICompileUnit. Don't import enums,
macros, retained types lists. Also only import local scoped imported
entities. Since we don't currently import any global variables,
we also don't need to import the list of global variables (added an
assert to verify none are being imported).
This is being done by pre-populating the value map entries to map
the unneeded metadata to nullptr. For the imported entities, we can
simply replace the source module's list with a new list containing
only those needed imported entities. This is done in the IRLinker
constructor so that value mapping automatically does the desired
mapping.
Reviewers: mehdi_amini, dexonsmith, dblaikie, aprantl
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D27635
llvm-svn: 289441
Most importantly, we need to hash the relocation model, otherwise we can
end up trying to link non-PIC object files into PIEs or DSOs.
Differential Revision: https://reviews.llvm.org/D27556
llvm-svn: 289024
This class represents a symbol table built from in-memory IR. It provides
access to GlobalValues and should only be used if such access is required
(e.g. in the LTO implementation). We will eventually change IRObjectFile
to read from a bitcode symbol table rather than using ModuleSymbolTable,
so it would not be able to expose the module.
Differential Revision: https://reviews.llvm.org/D27073
llvm-svn: 288319
This is no longer the recommended way to load modules for importing, so it should not be public API.
Differential Revision: https://reviews.llvm.org/D27292
llvm-svn: 288316
Summary:
This will also be added to the LTO API, right now this will
bring ThinLTO on par with Monolithic LTO on Darwin.
Reviewers: anemet
Subscribers: tejohnson, llvm-commits
Differential Revision: https://reviews.llvm.org/D26886
llvm-svn: 287450
Summary:
This makes it explicit that ownership is taken. Also replace all `new`
with make_unique<> at call sites.
Reviewers: anemet
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D26884
llvm-svn: 287449
It is used to drive this from the clang driver via -mllvm.
Same option name is used as in opt.
Differential Revision: https://reviews.llvm.org/D26832
llvm-svn: 287356
This patch updates a bunch of places where add_dependencies was being explicitly called to add dependencies on intrinsics_gen to instead use the DEPENDS named parameter. This cleanup is needed for a patch I'm working on to add a dependency debugging mode to the build system.
llvm-svn: 287206
Summary:
We have always speculatively promoted all renamable local values
(except const non-address taken variables) for both the exporting
and importing module. We would then internalize them back based on
the ThinLink results if they weren't actually exported. This is
inefficient, and results in unnecessary renames. It also meant we
had to check the non-renamability of a value in the summary, which
was already checked during function importing analysis in the ThinLink.
Made renameModuleForThinLTO (which does the promotion/renaming) instead
use the index when exporting, to avoid unnecessary renames/promotions.
For importing modules, we can simply promoted all values as any local
we import by definition is exported and needs promotion.
This required changes to the method used by the FunctionImport pass
(only invoked from 'opt' for testing) and when invoked from llvm-link,
since neither does a ThinLink. We simply conservatively mark all locals
in the index as promoted, which preserves the current aggressive
promotion behavior.
I also needed to change an llvm-lto based test where we had previously
been aggressively promoting values that weren't importable (aliasees),
but now will not promote.
Reviewers: mehdi_amini
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D26467
llvm-svn: 286871
The functions getBitcodeTargetTriple(), isBitcodeContainingObjCCategory(),
getBitcodeProducerString() and hasGlobalValueSummary() now return errors
via their return value rather than via the diagnostic handler.
To make this work, re-implement these functions using non-member functions
so that they can be used without the LLVMContext required by BitcodeReader.
Differential Revision: https://reviews.llvm.org/D26532
llvm-svn: 286623
Summary:
Split ReaderWriter.h which contains the APIs into both the BitReader and
BitWriter libraries into BitcodeReader.h and BitcodeWriter.h.
This is to address Chandler's concern about sharing the same API header
between multiple libraries (BitReader and BitWriter). That concern is
why we create a single bitcode library in our downstream build of clang,
which led to r286297 being reverted as it added a dependency that
created a cycle only when there is a single bitcode library (not two as
in upstream).
Reviewers: mehdi_amini
Subscribers: dlj, mehdi_amini, llvm-commits
Differential Revision: https://reviews.llvm.org/D26502
llvm-svn: 286566
This is forcing to use Error::success(), which is in a wide majority
of cases a lot more readable.
Differential Revision: https://reviews.llvm.org/D26481
llvm-svn: 286561
Unique ownership is just one possible ownership pattern for the memory buffer
underlying the bitcode reader. In practice, as this patch shows, ownership can
often reside at a higher level. With the upcoming change to allow multiple
modules in a single bitcode file, it will no longer be appropriate for
modules to generally have unique ownership of their memory buffer.
The C API exposes the ownership relation via the LLVMGetBitcodeModuleInContext
and LLVMGetBitcodeModuleInContext2 functions, so we still need some way for
the module to own the memory buffer. This patch does so by adding an owned
memory buffer field to Module, and using it in a few other places where it
is convenient.
Differential Revision: https://reviews.llvm.org/D26384
llvm-svn: 286214
Summary:
There is no point to importing at -O0, since we won't inline. We should
also disable other cross-module optimizations.
(Plan to backport this fix to the 3.9 branch to fix PR30774)
Reviewers: pcc
Subscribers: johanengelen, mehdi_amini
Differential Revision: https://reviews.llvm.org/D25918
llvm-svn: 285648
Summary:
When we have an aliasee that is linkonce, while we can't convert
the non-prevailing copies to available_externally, we still need to
convert the prevailing copy to weak. If a reference to the aliasee
is exported, not converting a copy to weak will result in undefined
references when the linkonce is removed in its original module.
Add a new test and update existing tests.
Reviewers: mehdi_amini
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D26076
llvm-svn: 285512
In an IR symbol table I would expect the comdats to be represented as:
- A table of strings, one for each comdat name.
- Each symbol has an optional index into that table.
The natural api for accessing that would be
InputFile:
ArrayRef<StringRef> getComdatTable() const;
Symbol:
int getComdatIndex() const;
This patch implements an API as close to that as possible. The
implementation on top of the current IRObjectFile is a bit hackish,
but should map just fine over a symbol table and is very convenient to
use.
llvm-svn: 285061
Summary:
This is a follow-up to D25416. It removes all usages of TimeValue from
llvm/Support library (except for the actual TimeValue declaration), and replaces
them with appropriate usages of std::chrono. To facilitate this, I have added
small utility functions for converting time points and durations into appropriate
OS-specific types (FILETIME, struct timespec, ...).
Reviewers: zturner, mehdi_amini
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D25730
llvm-svn: 284966
Summary:
Changes default backend parallelism from thread::hardware_concurrency to
the new llvm::heavyweight_hardware_concurrency, which for X86 Linux
defaults to the number of physical cores (and will fall back to
thread::hardware_concurrency otherwise). This avoid oversubscribing
the physical cores using hyperthreading.
Reviewers: mehdi_amini, pcc
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D25775
llvm-svn: 284618
Declare the LLVM_CMAKE_PATH to the source directory location of CMake
files, in order to make it possible to easily use them in subprojects.
Such a variable is already declared in most of LLVM projects
(and inconsistently mixed with direct source tree references), including
Clang, LLDB, compiler-rt, libcxx... Declaring it inside main LLVM tree
makes it possible to avoid having to declare fallback values or use
conditionals in those projects.
It should be noted that in some of the subprojects LLVM_CMAKE_PATH is
used to reference generated LLVMConfig.cmake file. However, these
references are conditional to stand-alone builds and explicitly
including this file is unnecessary in combined builds.
Differential Revision: https://reviews.llvm.org/D25724
llvm-svn: 284581
We need to use the overload of Mangler::getNameWithPrefix that takes a
GlobalValue in order to mangle in the stdcall stack byte count for Windows
targets.
Differential Revision: https://reviews.llvm.org/D25529
llvm-svn: 284040
Module inline asm was always being linked/concatenated
when running the IRLinker. This is correct for full LTO but not when
we are importing for ThinLTO, as it can result in multiply defined
symbols when the module asm defines a global symbol.
In order to test with llvm-lto2, I had to work around PR30396,
where a symbol that is defined in module assembly but defined in the
LLVM IR appears twice. Added workaround to llvm-lto2 with a FIXME.
Fixes PR30610.
Reviewers: mehdi_amini
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D25359
llvm-svn: 284030
Clang always emit a hash for ThinLTO, but as other frontend are
starting to use ThinLTO, this could be a serious bug.
Differential Revision: https://reviews.llvm.org/D25379
llvm-svn: 283655