Summary:
LSV wants to know the maximum size that can be loaded to a vector register.
On X86, this always matches the maximum register width. Implement this
accordingly and add a test to make sure that LSV can vectorize up to the
maximum permissible width on X86.
Reviewers: delena, arsenm
Reviewed By: arsenm
Subscribers: wdng, llvm-commits
Differential Revision: https://reviews.llvm.org/D31504
llvm-svn: 299589
Currently the default C calling convention functions are treated
the same as compute kernels. Make this explicit so the default
calling convention can be changed to a non-kernel.
Converted with perl -pi -e 's/define void/define amdgpu_kernel void/'
on the relevant test directories (and undoing in one place that actually
wanted a non-kernel).
llvm-svn: 298444
Implement isLegalToVectorizeLoadChain for AMDGPU to avoid
producing private address spaces accesses that will need to be
split up later. This was doing the wrong thing in the case
where the queried chain was an even number of elements.
A possible <4 x i32> store was being split into
store <2 x i32>
store i32
store i32
rather than
store <2 x i32>
store <2 x i32>
when legal.
llvm-svn: 295933
Summary:
The "getVectorizablePrefix" method would give up if it found an aliasing load for a store chain.
In practice, the aliasing load can be treated as a memory barrier and all stores that precede it
are a valid vectorizable prefix.
Issue found by volkan in D26962. Testcase is a pruned version of the one in the original patch.
Reviewers: jlebar, arsenm, tstellarAMD
Subscribers: mzolotukhin, wdng, nhaehnle, anna, volkan, llvm-commits
Differential Revision: https://reviews.llvm.org/D27008
llvm-svn: 287781
Summary:
This will let e.g. the load/store vectorizer propagate this metadata
appropriately.
Reviewers: arsenm
Subscribers: tra, jholewinski, hfinkel, mzolotukhin
Differential Revision: https://reviews.llvm.org/D23479
llvm-svn: 281153
Summary:
LSV replaces multiple adjacent loads with one vectorized load and a
bunch of extractelement instructions. This patch makes the
extractelement instructions' names match those of the original loads,
for (hopefully) improved readability.
Reviewers: asbirlea, tstellarAMD
Subscribers: arsenm, mzolotukhin
Differential Revision: https://reviews.llvm.org/D23748
llvm-svn: 280818
Summary:
LSV was using two vector sets (heads and tails) to track pairs of adjiacent position to vectorize.
A recent optimization is trying to obtain the longest chain to vectorize and assumes the positions
in heads(H) and tails(T) match, which is not the case is there are multiple tails for the same head.
e.g.:
i1: store a[0]
i2: store a[1]
i3: store a[1]
Leads to:
H: i1
T: i2 i3
Instead of:
H: i1 i1
T: i2 i3
So the positions for instructions that follow i3 will have different indexes in H/T.
This patch resolves PR29148.
This issue also surfaced the fact that if the chain is too long, and TLI
returns a "not-fast" answer, the whole chain will be abandoned for
vectorization, even though a smaller one would be beneficial.
Added a testcase and FIXME for this.
Reviewers: tstellarAMD, arsenm, jlebar
Subscribers: mzolotukhin, wdng, llvm-commits
Differential Revision: https://reviews.llvm.org/D24057
llvm-svn: 280179
Summary:
TargetBaseAlign is no longer required since LSV checks if target allows misaligned accesses.
A constant defining a base alignment is still needed for stack accesses where alignment can be adjusted.
Previous patch (D22936) was reverted because tests were failing. This patch also fixes the cause of those failures:
- x86 failing tests either did not have the right target, or the right alignment.
- NVPTX failing tests did not have the right alignment.
- AMDGPU failing test (merge-stores) should allow vectorization with the given alignment but the target info
considers <3xi32> a non-standard type and gives up early. This patch removes the condition and only checks
for a maximum size allowed and relies on the next condition checking for %4 for correctness.
This should be revisited to include 3xi32 as a MVT type (on arsenm's non-immediate todo list).
Note that checking the sizeInBits for a MVT is undefined (leads to an assertion failure),
so we need to create an EVT, hence the interface change in allowsMisaligned to include the Context.
Reviewers: arsenm, jlebar, tstellarAMD
Subscribers: jholewinski, arsenm, mzolotukhin, llvm-commits
Differential Revision: https://reviews.llvm.org/D23068
llvm-svn: 277735
Summary:
When we ask the builder to create a bitcast on a constant, we get back a
constant, not an instruction.
Reviewers: asbirlea
Subscribers: jholewinski, mzolotukhin, llvm-commits, arsenm
Differential Revision: https://reviews.llvm.org/D22878
llvm-svn: 276922
Summary:
Previously we wouldn't move loads/stores across instructions that had
side-effects, where that was defined as may-write or may-throw. But
this is not sufficiently restrictive: Stores can't safely be moved
across instructions that may load.
This patch also adds a DEBUG check that all instructions in our chain
are either loads or stores.
Reviewers: asbirlea
Subscribers: llvm-commits, jholewinski, arsenm, mzolotukhin
Differential Revision: https://reviews.llvm.org/D22547
llvm-svn: 276171
Summary:
Previously if we had a chain that contained a side-effecting
instruction, we wouldn't vectorize it at all. Now we'll vectorize
everything that comes before the side-effecting instruction.
Reviewers: asbirlea
Subscribers: arsenm, jholewinski, llvm-commits, mzolotukhin
Differential Revision: https://reviews.llvm.org/D22536
llvm-svn: 276170
Summary:
getVectorizablePrefix previously didn't work properly in the face of
aliasing loads/stores. It unwittingly assumed that the loads/stores
appeared in the BB in address order. If they didn't, it would do the
wrong thing.
Reviewers: asbirlea, tstellarAMD
Subscribers: arsenm, llvm-commits, mzolotukhin
Differential Revision: https://reviews.llvm.org/D22535
llvm-svn: 276072
Summary:
Previously, the insertion point for stores was the last instruction in
Chain *before calling getVectorizablePrefixEndIdx*. Thus if
getVectorizablePrefixEndIdx didn't return Chain.size(), we still would
insert at the last instruction in Chain.
This patch changes our internal API a bit in an attempt to make it less
prone to this sort of error. As a result, we end up recalculating the
Chain's boundary instructions, but I think worrying about the speed hit
of this is a premature optimization right now.
Reviewers: asbirlea, tstellarAMD
Subscribers: mzolotukhin, arsenm, llvm-commits
Differential Revision: https://reviews.llvm.org/D22534
llvm-svn: 276056
Summary:
This helps keep us honest -- there were a number of ways we could screw
up and still have passed this test.
Reviewers: asbirlea
Subscribers: llvm-commits, arsenm
Differential Revision: https://reviews.llvm.org/D22531
llvm-svn: 276053
Summary:
LSV used to abort vectorizing a chain for interleaved load/store accesses that alias.
Allow a valid prefix of the chain to be vectorized, mark just the prefix and retry vectorizing the remaining chain.
Reviewers: llvm-commits, jlebar, arsenm
Subscribers: mzolotukhin
Differential Revision: http://reviews.llvm.org/D22119
llvm-svn: 275317
Summary:
Aiming to correct the ordering of loads/stores. This patch changes the
insert point for loads to the position of the first load.
It updates the ordering method for loads to insert before, rather than after.
Before this patch the following sequence:
"load a[1], store a[1], store a[0], load a[2]"
Would incorrectly vectorize to "store a[0,1], load a[1,2]".
The correctness check was assuming the insertion point for loads is at
the position of the first load, when in practice it was at the last
load. An alternative fix would have been to invert the correctness check.
The current fix changes insert position but also requires reordering of
instructions before the vectorized load.
Updated testcases to reflect the changes.
Reviewers: tstellarAMD, llvm-commits, jlebar, arsenm
Subscribers: mzolotukhin
Differential Revision: http://reviews.llvm.org/D22071
llvm-svn: 275117
Summary:
GetBoundryInstruction returns the last instruction as the instruction which follows or end(). Otherwise the last instruction in the boundry set is not being tested by isVectorizable().
Partially solve reordering of instructions. More extensive solution to follow.
Reviewers: tstellarAMD, llvm-commits, jlebar
Subscribers: escha, arsenm, mzolotukhin
Differential Revision: http://reviews.llvm.org/D21934
llvm-svn: 274389
integer.
Fixes issues on some architectures where we use arithmetic ops to build
vectors, which can cause bad things to happen for loads/stores of mixed
types.
Patch by Fiona Glaser
llvm-svn: 274307