The Timer destructor would grab a global mutex in order to update
execution time. Add a class to define a category once, statically; the
class adds itself to an atomic singly linked list, and thus subsequent
updates only need to use an atomic rather than grab a lock and perform a
hashtable lookup.
Differential Revision: https://reviews.llvm.org/D32823
Patch by Scott Smith <scott.smith@purestorage.com>.
llvm-svn: 303058
Summary:
Add basic OpenBSD support. This is enough to be able to analyze core dumps for OpenBSD/amd64, OpenBSD/arm, OpenBSD/arm64 and OpenBSD/i386.
Note that part of the changes to source/Plugins/ObjectFile/ELF/ObjectFileELF.cpp fix a bug that probably affects other platforms as well. The GetProgramHeaderByIndex() interface use 1-based indices, but in some case when looping over the headers the, the loop starts at 0 and misses the last header. This caused problems on OpenBSD since OpenBSD core dumps have the PT_NOTE segment as the last program header.
Reviewers: joerg, labath, krytarowski
Reviewed By: krytarowski
Subscribers: aemerson, emaste, rengolin, srhines, krytarowski, mgorny, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D31131
llvm-svn: 298810
Summary: I was building lldb using cross mingw-w64 toolchain on Linux and observed some issues. This is first patch in the series to fix that build. It mostly corrects the case of include files and adjusts some #ifdefs from _MSC_VER to _WIN32 and vice versa. I built lldb on windows with VS after applying this patch to make sure it does not break the build there.
Reviewers: zturner, labath, abidh
Subscribers: ki.stfu, mgorny, lldb-commits
Differential Revision: https://reviews.llvm.org/D27759
llvm-svn: 289821
The Windows process plugin was broken up into multiple pieces a while back in
order to share code between debugging live processes and minidumps
(postmortem) debugging. The minidump portion was replaced by a cross-platform
solution. This left the plugin split into a formerly "common" base classes and
the derived classes for live debugging. This extra layer made the code harder
to understand and work with.
This patch simplifies these class hierarchies by rolling the live debugging
concrete classes up to the base classes. Last week I posted my intent to make
this change to lldb-dev, and I didn't hear any objections.
This involved moving code and changing references to classes like
ProcessWindowsLive to ProcessWindows. It still builds for both 32- and 64-bit,
and the tests still pass on 32-bit. (Tests on 64-bit weren't passing before
this refactor for unrelated reasons.)
llvm-svn: 287770
Summary:
This commit disables the windows-only minidump plugin and enables the new
cross-platform plugin for windows minidump files. Test decorators are adjusted to
reflect that: windows minidump tests can now run on all platforms. The exception
is the tests that create minidump files, as that functionality is not available
yet. I've checked that this works on windows and linux.
Reviewers: amccarth, zturner
Subscribers: dvlahovski, lldb-commits
Differential Revision: https://reviews.llvm.org/D26393
llvm-svn: 286352
Summary:
This plugin resembles the already existing Windows-only Minidump plugin.
The WinMinidumpPlugin uses the Windows API for parsing Minidumps
while this plugin is cross-platform because it includes a Minidump
parser (which is already commited)
It is able to produce a backtrace, to read the general puprose regiters,
inspect local variables, show image list, do memory reads, etc.
For now the only arches that this supports are x86_32 and x86_64.
This is because I have only written register contexts for those.
Others will come in next CLs.
I copied the WinMinidump tests and adapted them a little bit for them to
work with the new plugin (and they pass)
I will add more tests, aiming for better code coverage.
There is still functionality to be added, see TODOs in code.
Reviewers: labath, zturner
Subscribers: beanz, mgorny, modocache, lldb-commits, amccarth
Differential Revision: https://reviews.llvm.org/D25905
llvm-svn: 285587
Tests are failing and build is failing on windows and darwin.
Will fix and commit it later
-------------------------------------------------------------
Revert "xfailing minidump tests again ... :("
This reverts commit 97eade002c9e43c1e0d11475a4888083a8965044.
Revert "Fixing new Minidump plugin tests"
This reverts commit 0dd93b3ab39c8288696001dd50b9a093b813b09c.
Revert "Add the new minidump files to the Xcode project."
This reverts commit 2f638a1d046b8a88e61e212220edc40aecd2ce44.
Revert "xfailing tests for Minidump plugin"
This reverts commit 99311c0b22338a83e6a00c4fbddfd3577914c003.
Revert "Adding a new Minidump post-mortem debugging plugin"
This reverts commit b09a7e4dae231663095a84dac4be3da00b03a021.
llvm-svn: 283352
Summary:
This plugin resembles the already existing Windows-only Minidump plugin.
The WinMinidumpPlugin uses the Windows API for parsing Minidumps
while this plugin is cross-platform because it includes a Minidump
parser (which is already commited)
It is able to produce a backtrace, to read the general puprose regiters,
inspect local variables, show image list, do memory reads, etc.
For now the only arch that this supports is x86 64 bit
This is because I have only written a register context for that arch.
Others will come in next CLs.
I copied the WinMinidump tests and adapted them a little bit for them to
work with the new plugin (and they pass)
I will add more tests, aiming for better code coverage.
There is still functionality to be added, see TODOs in code.
Reviewers: labath, zturner
Subscribers: beanz, mgorny, amccarth, lldb-commits, modocache
Differential Revision: https://reviews.llvm.org/D25196
llvm-svn: 283259
*** to conform to clang-format’s LLVM style. This kind of mass change has
*** two obvious implications:
Firstly, merging this particular commit into a downstream fork may be a huge
effort. Alternatively, it may be worth merging all changes up to this commit,
performing the same reformatting operation locally, and then discarding the
merge for this particular commit. The commands used to accomplish this
reformatting were as follows (with current working directory as the root of
the repository):
find . \( -iname "*.c" -or -iname "*.cpp" -or -iname "*.h" -or -iname "*.mm" \) -exec clang-format -i {} +
find . -iname "*.py" -exec autopep8 --in-place --aggressive --aggressive {} + ;
The version of clang-format used was 3.9.0, and autopep8 was 1.2.4.
Secondly, “blame” style tools will generally point to this commit instead of
a meaningful prior commit. There are alternatives available that will attempt
to look through this change and find the appropriate prior commit. YMMV.
llvm-svn: 280751
Take 2, with missing cmake line fixed. Build tested on
Ubuntu 14.04 with clang-3.6.
See docs/structured_data/StructuredDataPlugins.md for details.
differential review: https://reviews.llvm.org/D22976
reviewers: clayborg, jingham
llvm-svn: 279202
It's always hard to remember when to include this file, and
when you do include it it's hard to remember what preprocessor
check it needs to be behind, and then you further have to remember
whether it's windows.h or win32.h which you need to include.
This patch changes the name to PosixApi.h, which is more appropriately
named, and makes it independent of any preprocessor setting.
There's still the issue of people not knowing when to include this,
because there's not a well-defined set of things it exposes other
than "whatever is missing on Windows", but at least this should
make it less painful to fix when problems arise.
This patch depends on LLVM revision r278170.
llvm-svn: 278177
This introduces basic support for debugging OCaml binaries.
Use of the native compiler with DWARF emission support (see
https://github.com/ocaml/ocaml/pull/574) is required.
Available variables are considered as 64 bits unsigned integers,
their interpretation will be left to a OCaml-made debugging layer.
Differential revision: https://reviews.llvm.org/D22132
llvm-svn: 277443
for the fall (northern hemisphere) 2016 Darwin platforms to learn
about loaded images, instead of reading dyld internal data structures.
These new SPI don't exist on older releases, and new packets are
needed from debugserver to use them (those changes are already committed).
I had to change the minimum deployment target for debugserver in the xcode
project file to macOS 10.10 so that debugserver will use the
[[NSProcessInfo processInfo] operatingSystemVersion]
call in MachProcess::GetOSVersionNumbers to get the operarting system
version # -- this API is only available in macOS 10.10 and newer
("OS X Yosemite", released Oct 2014). If we have many people building
llvm.org lldb on older systems still, we can back off on this for the
llvm.org sources.
There should be no change in behavior with this commit, either to
older darwin systems or newer darwin systems.
For now the new DynamicLoader plugin is never activated - I'm forcing
the old plugin to be used in DynamicLoaderDarwin::UseDYLDSPI.
I'll remove that unconditional use of the old plugin soon, so the
newer plugin is used on the newest Darwin platforms.
<rdar://problem/25251243>
llvm-svn: 276254
Summary:
This removes the last usage of Platform plugins in lldb-server -- it was used for launching child
processes, where it can be trivially replaced by Host::LaunchProces (as lldb-server is always
running on the host).
Removing platform plugins enables us to remove a lot of other unused code, which was pulled in as
a transitive dependency, and it reduces lldb-server size by 4%--9% (depending on build type and
architecture).
Reviewers: clayborg
Subscribers: tberghammer, danalbert, srhines, lldb-commits
Differential Revision: http://reviews.llvm.org/D20440
llvm-svn: 274125
This patch adds support for Linux on SystemZ:
- A new ArchSpec value of eCore_s390x_generic
- A new directory Plugins/ABI/SysV-s390x providing an ABI implementation
- Register context support
- Native Linux support including watchpoint support
- ELF core file support
- Misc. support throughout the code base (e.g. breakpoint opcodes)
- Test case updates to support the platform
This should provide complete support for debugging the SystemZ platform.
Not yet supported are optional features like transaction support (zEC12)
or SIMD vector support (z13).
There is no instruction emulation, since our ABI requires that all code
provide correct DWARF CFI at all PC locations in .eh_frame to support
unwinding (i.e. -fasynchronous-unwind-tables is on by default).
The implementation follows existing platforms in a mostly straightforward
manner. A couple of things that are different:
- We do not use PTRACE_PEEKUSER / PTRACE_POKEUSER to access single registers,
since some registers (access register) reside at offsets in the user area
that are multiples of 4, but the PTRACE_PEEKUSER interface only allows
accessing aligned 8-byte blocks in the user area. Instead, we use a s390
specific ptrace interface PTRACE_PEEKUSR_AREA / PTRACE_POKEUSR_AREA that
allows accessing a whole block of the user area in one go, so in effect
allowing to treat parts of the user area as register sets.
- SystemZ hardware does not provide any means to implement read watchpoints,
only write watchpoints. In fact, we can only support a *single* write
watchpoint (but this can span a range of arbitrary size). In LLDB this
means we support only a single watchpoint. I've set all test cases that
require read watchpoints (or multiple watchpoints) to expected failure
on the platform. [ Note that there were two test cases that install
a read/write watchpoint even though they nowhere rely on the "read"
property. I've changed those to simply use plain write watchpoints. ]
Differential Revision: http://reviews.llvm.org/D18978
llvm-svn: 266308
Summary: These are not needed by lldb-server. Removing them shrinks the server by about 0.5%.
Reviewers: zturner
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D18206
llvm-svn: 264735
This patch adds ThreadSanitizer support into LLDB:
- Adding a new InstrumentationRuntime plugin, ThreadSanitizerRuntime, in the same way ASan is implemented.
- A breakpoint stops in `__tsan_on_report`, then we extract all sorts of information by evaluating an expression. We then populate this into StopReasonExtendedInfo.
- SBThread gets a new API, SBThread::GetStopReasonExtendedBacktraces(), which returns TSan’s backtraces in the form of regular SBThreads. Non-TSan stop reasons return an empty collection.
- Added some test cases.
Reviewed by Greg Clayton.
llvm-svn: 264162
Summary: These are not needed in lldb-server. Removing them shrinks the server size by about 1.5%.
Reviewers: zturner
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D18188
llvm-svn: 263625
PDB is Microsoft's debug information format, and although we
cannot yet generate it, we still must be able to consume it.
Reason for this is that debug information for system libraries
(e.g. kernel32, C Runtime Library, etc) only have debug info
in PDB format, so in order to be able to support debugging
of system code, we must support it.
Currently this code should compile on every platform, but on
non-Windows platforms the PDB plugin will return 0 capabilities,
meaning that for now PDB is only supported on Windows. This
may change in the future, but the API is designed in such a way
that this will require few (if any) changes on the LLDB side.
In the future we can just flip a switch and everything will
work.
This patch only adds support for line tables. It does not return
information about functions, types, global variables, or anything
else. This functionality will be added in a followup patch.
Differential Revision: http://reviews.llvm.org/D17363
Reviewed by: Greg Clayton
llvm-svn: 262528
The purpose of these plugins is to make LLDB capable of debugging java
code JIT-ed by the android runtime.
Differential revision: http://reviews.llvm.org/D17616
llvm-svn: 262015
(There are changes in the copies of these four files in the FreeBSD base
system, and I've changed these ones to reduce gratuitous diffs in future
imports.)
llvm-svn: 256723
Summary: When the Hexagon ABI was added, it was inadvertently left out of initialization/termination. This patch adds it.
Reviewers: clayborg
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D15347
llvm-svn: 255268
Summary:
Along with this, support for an optional argument to the "num_children"
method of a Python synthetic child provider has also been added. These have
been added with the following use case in mind:
Synthetic child providers currently have a method "has_children" and
"num_children". While the former is good enough to know if there are
children, it does not give any insight into how many children there are.
Though the latter serves this purpose, calculating the number for children
of a data structure could be an O(N) operation if the data structure has N
children. The new method added in this change provide a middle ground.
One can call GetNumChildren(K) to know if a child exists at an index K
which can be as large as the callers tolerance can be. If the caller wants
to know about children beyond K, it can make an other call with 2K. If the
synthetic child provider maintains state about it counting till K
previosly, then the next call is only an O(K) operation. Infact, all
calls made progressively with steps of K will be O(K) operations.
Reviewers: vharron, clayborg, granata.enrico
Subscribers: labath, lldb-commits
Differential Revision: http://reviews.llvm.org/D13778
llvm-svn: 250930
This cleans up type systems to be more pluggable. Prior to this we had issues:
- Module, SymbolFile, and many others has "ClangASTContext &GetClangASTContext()" functions. All have been switched over to use "TypeSystem *GetTypeSystemForLanguage()"
- Cleaned up any places that were using the GetClangASTContext() functions to use TypeSystem
- Cleaned up Module so that it no longer has dedicated type system member variables:
lldb::ClangASTContextUP m_ast; ///< The Clang AST context for this module.
lldb::GoASTContextUP m_go_ast; ///< The Go AST context for this module.
Now we have a type system map:
typedef std::map<lldb::LanguageType, lldb::TypeSystemSP> TypeSystemMap;
TypeSystemMap m_type_system_map; ///< A map of any type systems associated with this module
- Many places in code were using ClangASTContext static functions to place with CompilerType objects and add modifiers (const, volatile, restrict) and to make typedefs, L and R value references and more. These have been made into CompilerType functions that are abstract:
class CompilerType
{
...
//----------------------------------------------------------------------
// Return a new CompilerType that is a L value reference to this type if
// this type is valid and the type system supports L value references,
// else return an invalid type.
//----------------------------------------------------------------------
CompilerType
GetLValueReferenceType () const;
//----------------------------------------------------------------------
// Return a new CompilerType that is a R value reference to this type if
// this type is valid and the type system supports R value references,
// else return an invalid type.
//----------------------------------------------------------------------
CompilerType
GetRValueReferenceType () const;
//----------------------------------------------------------------------
// Return a new CompilerType adds a const modifier to this type if
// this type is valid and the type system supports const modifiers,
// else return an invalid type.
//----------------------------------------------------------------------
CompilerType
AddConstModifier () const;
//----------------------------------------------------------------------
// Return a new CompilerType adds a volatile modifier to this type if
// this type is valid and the type system supports volatile modifiers,
// else return an invalid type.
//----------------------------------------------------------------------
CompilerType
AddVolatileModifier () const;
//----------------------------------------------------------------------
// Return a new CompilerType adds a restrict modifier to this type if
// this type is valid and the type system supports restrict modifiers,
// else return an invalid type.
//----------------------------------------------------------------------
CompilerType
AddRestrictModifier () const;
//----------------------------------------------------------------------
// Create a typedef to this type using "name" as the name of the typedef
// this type is valid and the type system supports typedefs, else return
// an invalid type.
//----------------------------------------------------------------------
CompilerType
CreateTypedef (const char *name, const CompilerDeclContext &decl_ctx) const;
};
Other changes include:
- Removed "CompilerType TypeSystem::GetIntTypeFromBitSize(...)" and CompilerType TypeSystem::GetFloatTypeFromBitSize(...) and replaced it with "CompilerType TypeSystem::GetBuiltinTypeForEncodingAndBitSize(lldb::Encoding encoding, size_t bit_size);"
- Fixed code in Type.h to not request the full type for a type for no good reason, just request the forward type and let the type expand as needed
llvm-svn: 247953
Historically, data formatters all exist in a global repository (the category map)
On top of that, some formatters can be "hardcoded" when the conditions under which they apply are not expressible as a typename (or typename regex)
This change paves the way to move formatters into per-language buckets such that the C++ plugin is responsible for ownership of the C++ formatters, and so on
The advantages of this are:
a) language formatters only get created when they might apply
b) formatters for a language are clearly owned by the matching language plugin
The current model is one of static instantiation, that is a language knows the full set of formatters it vends and that is only asked-for once, and then handed off to the FormatManager
In a future revision it might be interesting to add similar ability to the language runtimes, and monitor for certain shared library events to add even more library-specific formatters
No formatters are moved as part of this change, so practically speaking this is NFC
llvm-svn: 246568
Historically, data formatters all exist in a global repository (the category map)
On top of that, some formatters can be "hardcoded" when the conditions under which they apply are not expressible as a typename (or typename regex)
This change paves the way to move formatters into per-language buckets such that the C++ plugin is responsible for ownership of the C++ formatters, and so on
The advantages of this are:
a) language formatters only get created when they might apply
b) formatters for a language are clearly owned by the matching language plugin
The current model is one of static instantiation, that is a language knows the full set of formatters it vends and that is only asked-for once, and then handed off to the FormatManager
In a future revision it might be interesting to add similar ability to the language runtimes, and monitor for certain shared library events to add even more library-specific formatters
No formatters are moved as part of this change, so practically speaking this is NFC
llvm-svn: 246515
Summary: We get an assertion otherwise because the None Interpreter cannot be found
Reviewers: zturner
Subscribers: zturner, lldb-commits
Differential Revision: http://reviews.llvm.org/D11898
llvm-svn: 245808
Previously embedded interpreters were handled as ad-hoc source
files compiled into source/Interpreter. This made it hard to
disable a specific interpreter, or to add support for other
interpreters and allow the developer to choose which interpreter(s)
were enabled for a particular build.
This patch converts script interpreters over to a plugin-based system.
Script interpreters now live in source/Plugins/ScriptInterpreter, and
the canonical LLDB interpreter, ScriptInterpreterPython, is moved there
as well.
Any new code interfacing with the Python C API must live in this location
from here on out. Additionally, generic code should never need to
reference or make assumptions about the presence of a specific interpreter
going forward.
Differential Revision: http://reviews.llvm.org/D11431
Reviewed By: Greg Clayton
llvm-svn: 243681
Summary:
This commit moves the Windows DyanamicLoader to the common DynamicLoader
directory. This is required to remote debug Windows targets.
This commit also initializes the Windows DYLD plugin in
SystemInitializerCommon (similarly to both POSIX and MacOSX DYLD
plugins) so that we can automatically instantiate this class when
connected to a windows process.
Test Plan: Build.
Reviewers: zturner
Subscribers: lldb-commits, abdulras
Differential Revision: http://reviews.llvm.org/D10882
llvm-svn: 241697
Summary:
Currently, the local-only path fails about 50% of the tests, which means that: a) nobody is using
it; and b) the remote debugging path is much more stable. This commit removes the local-only
linux debugging code (ProcessLinux) and makes remote-loopback the only way to debug local
applications (the same architecture as OSX). The ProcessPOSIX code is moved to the FreeBSD
directory, which is now the only user of this class. Hopefully, FreeBSD will soon move to the new
architecture as well and then this code can be removed completely.
Test Plan: Test suite passes via remote stub.
Reviewers: emaste, vharron, ovyalov, clayborg
Subscribers: tberghammer, emaste, lldb-commits
Differential Revision: http://reviews.llvm.org/D10661
llvm-svn: 240543
This code is also an import from MacOSx implementation as SysV abi is
similar to what has been implemented for MacOS but may require a few tweaks.
http://reviews.llvm.org/D8538
llvm-svn: 236098
Its mostly imported from MacOSx ABI for arm which is similar.
Further tweaking a updates may be required at a later stage.
http://reviews.llvm.org/D8539
llvm-svn: 236097
Linux arm don't support hardware stepping (neither mismatch
breakpoints). This patch implement signle stepping with doing a software
emulation of the next instruction and then setting a temporary
breakpoint at the address where the thread will stop next.
Differential revision: http://reviews.llvm.org/D8976
llvm-svn: 234987
Plan is to have this initialized on a per-process basis somewhat the same as the ObjC library on module loading, but this commit is simply the foundation work and will be incrementally built upon to add that detection functionality.
Differential Revision: http://reviews.llvm.org/D8896
llvm-svn: 234503