The default exception handling isn't very user friendly and does not
point accurately to the issue. Instead we can indicate which of the
operands isn't valid and provide contextual information in the error
message.
Differential Revision: https://reviews.llvm.org/D92710
After bufferization, the backend has much more trouble hoisting loop invariant
loads from the loops generated by the sparse compiler. Therefore, this is done
during sparse code generation. Note that we don't bother hoisting derived
invariant expressions on SSA values, since the backend does that very well.
Still TBD: scalarize reductions to avoid load-add-store cycles
Reviewed By: penpornk
Differential Revision: https://reviews.llvm.org/D92534
Add support to normalize affine.for ops i.e., convert the lower bound to zero
and loop step to one. The Upper bound is set to the trip count of the loop.
The exact value of loopIV is calculated just inside the body of affine.for.
Currently loops with lower bounds having single result are supported. No such
restriction exists on upper bounds.
Differential Revision: https://reviews.llvm.org/D92233
Some Ops in OMP dialect have regions associated with them i.e
`ParallelOp` `MasterOp`. Lowering of these regions involves interfacing
with `OMPIRBuilder` using callbacks, yet there still exist opportunities
for sharing common code in between.
This patch factors out common code into a separate function and adds
support for lowering `MasterOp` using that. Lowering of `ParallelOp` is
also modified appropriately.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D87247
Trailing objects are really nice for storing additional data inline with the main class, and is something that we heavily take advantage of for Operation(and many other classes). To get the address of the inline data you need to compute the address by doing some pointer arithmetic taking into account any objects stored before the object you want to access. Most classes keep the count of the number of objects, so this is relatively cheap to compute. This is not the case for results though, which have two different types(inline and trailing) that are not necessarily as cheap to compute as the count for other objects. This revision moves the storage for results to before the operation and stores them in reverse order. This allows for getting results to still be very fast given that they are never iterated directly in order, and also greatly improves the speed when accessing the other trailing objects of an operation(operands/regions/blocks/etc).
This reduced compile time when compiling a decently sized mlir module by about ~400ms, or 2.17s -> 1.76s.
Differential Revision: https://reviews.llvm.org/D92687
The check for formatting enum attributes was missing a call to get the base attribute, which is necessary to strip off the top-level OptionalAttr<> wrapper.
Differential Revision: https://reviews.llvm.org/D92713
Make UnrollVectorPattern inherit from RewritePattern instead of
OpRewritePattern so that we don't need to create many patterns when applying to
many different type of ops. Since we may want to apply the pattern to all
arithmetic op, it is more convenient to filter dynamically.
Differential Revision: https://reviews.llvm.org/D92635
- Instead of hardcoding the parameters and return types of 'inferReturnTypes', use the
InferTypeOpInterface trait to generate the method declaration.
- Fix InferTypeOfInterface to use fully qualified type for inferReturnTypes results.
Differential Revision: https://reviews.llvm.org/D92585
In the past, the reshape op can be folded only if the indexing map is
permutation in consumer's usage. We can relax to condition to be projected
permutation.
This patch still limits the fusion for scalar cases. Scalar case is a corner
case, because we need to decide where to put extra dims.
Reviewed By: mravishankar
Differential Revision: https://reviews.llvm.org/D92466
This is part of a larger refactoring the better congregates the builtin structures under the BuiltinDialect. This also removes the problematic "standard" naming that clashes with the "standard" dialect, which is not defined within IR/. A temporary forward is placed in StandardTypes.h to allow time for downstream users to replaced references.
Differential Revision: https://reviews.llvm.org/D92435
The definitions of ModuleOp and FuncOp are now within BuiltinOps.h, making the individual files obsolete.
Differential Revision: https://reviews.llvm.org/D92622
A separate AVX512 lowering pass does not compose well with the regular
vector lowering pass. As such, it is at risk of code duplication and
lowering inconsistencies. This change removes the separate AVX512 lowering
pass and makes it an "option" in the regular vector lowering pass
(viz. vector dialect "augmented" with AVX512 dialect).
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D92614
This was important when ModuleOp was the only top level operation, but that isn't necessarily the case anymore. This is one of the last remaining aspects of the infrastructure that is hardcoded to ModuleOp.
Differential Revision: https://reviews.llvm.org/D92605
This was a somewhat important restriction in the past when ModuleOp was distinctly the top-level container operation, as well as before the pass manager had support for running nested pass managers natively. With these two issues fading away, there isn't really a good reason to enforce that a ModuleOp is the thing running within a pass manager. As such, this revision removes the restriction and allows for users to pass in the name of the operation that the pass manager will be scheduled on.
The only remaining dependency on BuiltinOps from Pass after this revision is due to FunctionPass, which will be resolved in a followup revision.
Differential Revision: https://reviews.llvm.org/D92450
There isn't a good reason for anything within IR to specifically reference any of the builtin operations. The only place that had a good reason in the past was AsmPrinter, but the behavior there doesn't need to hardcode ModuleOp anymore.
Differential Revision: https://reviews.llvm.org/D92448
Add support for vectorization for linalg.generic representing element-wise ops.
Those are converted to transfer_read + vector ops + transfer_write.
Also re-organize the vectorization tests to be together.
Implementation derived from the work of @burmako, @agrue and
@fedelebron.
Differential Revision: https://reviews.llvm.org/D92540
This fixes the build on gcc5 toolchain where sizeof is required for
types used in SmallVector now.
This is a consequence of using std::is_trivially_copy_constructible
instead of the LLVM variant: https://reviews.llvm.org/D92543
This reduces the chances of segfault. While it is a good practice to ensure
robust custom printers, it is unfortunately common to have them crash on
invalid input.
Reviewed By: stellaraccident
Differential Revision: https://reviews.llvm.org/D92536
Memrefs with affine_map in the results of normalizable operation were
not normalized by `--normalize-memrefs` option. This patch normalizes
them.
Differential Revision: https://reviews.llvm.org/D88719
Extended promote buffers to stack pass to support dynamically shaped allocas.
The conversion is limited by the rank of the underlying tensor.
An option is added to the pass to adjust the given rank.
Differential Revision: https://reviews.llvm.org/D91969
Given that OpState already implicit converts to Operator*, this seems reasonable.
The alternative would be to add more functions to OpState which forward to Operation.
Reviewed By: rriddle, ftynse
Differential Revision: https://reviews.llvm.org/D92266
OpenMPIRBuilder::createParallel outlines the body region of the parallel
construct into a new function that accepts any value previously defined outside
the region as a function argument. This function is called back by OpenMP
runtime function __kmpc_fork_call, which expects trailing arguments to be
pointers. If the region uses a value that is not of a pointer type, e.g. a
struct, the produced code would be invalid. In such cases, make createParallel
emit IR that stores the value on stack and pass the pointer to the outlined
function instead. The outlined function then loads the value back and uses as
normal.
Reviewed By: jdoerfert, llitchev
Differential Revision: https://reviews.llvm.org/D92189
The test process of the ir_array_attributes.py depends on numpy. This patch checks numpy in Python bindings configuration.
- Add NumPy in find_package as a required component to check numpy.
- If numpy is found, print the version and include directory.
Differential Revision: https://reviews.llvm.org/D92276
PDL patterns are now supported via a new `PDLPatternModule` class. This class contains a ModuleOp with the pdl::PatternOp operations representing the patterns, as well as a collection of registered C++ functions for native constraints/creations/rewrites/etc. that may be invoked via the pdl patterns. Instances of this class are added to an OwningRewritePatternList in the same fashion as C++ RewritePatterns, i.e. via the `insert` method.
The PDL bytecode is an in-memory representation of the PDL interpreter dialect that can be efficiently interpreted/executed. The representation of the bytecode boils down to a code array(for opcodes/memory locations/etc) and a memory buffer(for storing attributes/operations/values/any other data necessary). The bytecode operations are effectively a 1-1 mapping to the PDLInterp dialect operations, with a few exceptions in cases where the in-memory representation of the bytecode can be more efficient than the MLIR representation. For example, a generic `AreEqual` bytecode op can be used to represent AreEqualOp, CheckAttributeOp, and CheckTypeOp.
The execution of the bytecode is split into two phases: matching and rewriting. When matching, all of the matched patterns are collected to avoid the overhead of re-running parts of the matcher. These matched patterns are then considered alongside the native C++ patterns, which rewrite immediately in-place via `RewritePattern::matchAndRewrite`, for the given root operation. When a PDL pattern is matched and has the highest benefit, it is passed back to the bytecode to execute its rewriter.
Differential Revision: https://reviews.llvm.org/D89107
- Change InferTypeOpInterface::inferResultTypes to use fully qualified types matching
the ones generated by genTypeInterfaceMethods, so the redundancy can be detected.
- Move genTypeInterfaceMethods() before genOpInterfaceMethods() so that the
inferResultTypes method generated by genTypeInterfaceMethods() takes precedence
over the declaration that might be generated by genOpInterfaceMethods()
- Modified an op in the test dialect to exercise this (the modified op would fail to
generate valid C++ code due to duplicate inferResultTypes methods).
Differential Revision: https://reviews.llvm.org/D92414
ExecutionEngine/LLJIT do not run globals destructors in loaded dynamic libraries when destroyed, and threads managed by ThreadPool can race with program termination, and it leads to segfaults.
TODO: Re-enable threading after fixing a problem with destructors, or removing static globals from dynamic library.
Differential Revision: https://reviews.llvm.org/D92368
- Address TODO in scf-bufferize: the argument materialization issue is
now fixed and the code is now in Transforms/Bufferize.cpp
- Tighten up finalizing-bufferize to avoid creating invalid IR when
operand types potentially change
- Tidy up the testing of func-bufferize, and move appropriate tests
to a new finalizing-bufferize.mlir
- The new stricter checking in finalizing-bufferize revealed that we
needed a DimOp conversion pattern (found when integrating into npcomp).
Previously, the converion infrastructure was blindly changing the
operand type during finalization, which happened to work due to
DimOp's tensor/memref polymorphism, but is generally not encouraged
(the new pattern is the way to tell the conversion infrastructure that
it is legal to change that type).
The InlineAsmOp mirrors the underlying LLVM semantics with a notable
exception: the embedded `asm_string` is not allowed to define or reference
any symbol or any global variable: only the operands of the op may be read,
written, or referenced.
Attempting to define or reference any symbol or any global behavior is
considered undefined behavior at this time.
The asm dialect syntax is currently specified with an integer (0 [default] for the "att dialect", 1 for the intel dialect) to circumvent the ODS limitation on string enums.
Translation to LLVM is provided and raises the fact that the asm constraints string must be well-formed with respect to in/out operands. No check is performed on the asm_string.
An InlineAsm instruction in LLVM is a special call operation to a function that is constructed on the fly.
It does not fit the current model of MLIR calls with symbols.
As a consequence, the current implementation constructs the function type in ModuleTranslation.cpp.
This should be refactored in the future.
The mlir-cpu-runner is augmented with the global initialization of the X86 asm parser to allow proper execution in JIT mode. Previously, only the X86 asm printer was initialized.
Differential revision: https://reviews.llvm.org/D92166
* If ODS redefines this, it is fine, but I have found this accessor to be universally useful in the old npcomp bindings and I'm closing gaps that will let me switch.
Differential Revision: https://reviews.llvm.org/D92287
* Add capsule get/create for Attribute and Type, which already had capsule interop defined.
* Add capsule interop and get/create for Location.
* Add Location __eq__.
* Use get() and implicit cast to go from PyAttribute, PyType, PyLocation to MlirAttribute, MlirType, MlirLocation (bundled with this change because I didn't want to continue the pattern one more time).
Differential Revision: https://reviews.llvm.org/D92283
Op with mapping from ops to corresponding shape functions for those op
in the library and mechanism to associate shape functions to functions.
The mapping of operand to shape function is kept separate from the shape
functions themselves as the operation is associated to the shape
function and not vice versa, and one could have a common library of
shape functions that can be used in different contexts.
Use fully qualified names and require a name for shape fn lib ops for
now and an explicit print/parse (based around the generated one & GPU
module op ones).
This commit reverts d9da4c3e73. Fixes
missing headers (don't know how that was working locally).
Differential Revision: https://reviews.llvm.org/D91672
Op with mapping from ops to corresponding shape functions for those op
in the library and mechanism to associate shape functions to functions.
The mapping of operand to shape function is kept separate from the shape
functions themselves as the operation is associated to the shape
function and not vice versa, and one could have a common library of
shape functions that can be used in different contexts.
Use fully qualified names and require a name for shape fn lib ops for
now and an explicit print/parse (based around the generated one & GPU
module op ones).
Differential Revision: https://reviews.llvm.org/D91672
A splat attribute have a single element during printing so we should
treat it as such when we decide if we elide it or not based on the flag
intended to elide large attributes.
Reviewed By: rriddle, mehdi_amini
Differential Revision: https://reviews.llvm.org/D92165
Many pages have had their titles renamed over time,
causing broken links to spread throughout the documentation.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D92093
The ops are very similar to the std variants, but support async GPU execution.
gpu.alloc does not currently support an alignment attribute, and the new ops do not have
canonicalizers/folders like their std siblings do.
Reviewed By: herhut
Differential Revision: https://reviews.llvm.org/D91698
The rewrite logic has an optimization to drop a cast operation after
rewriting block arguments if the cast operation has no users. This is
unsafe as there might be a pending rewrite that replaced the cast operation
itself and hence would trigger a second free.
Instead, do not remove the casts and leave it up to a later canonicalization
to do so.
Differential Revision: https://reviews.llvm.org/D92184
This change is required so that bufferization can properly identify
the linalg.yield as a terminator with an associated parent op.
Differential Revision: https://reviews.llvm.org/D92173
This enables partial bufferization that includes function signatures. To test this, this
change also makes the func-bufferize partial and adds a dedicated finalizing-bufferize pass.
Differential Revision: https://reviews.llvm.org/D92032
This change gives sparse compiler clients more control over selecting
individual types for the pointers and indices in the sparse storage schemes.
Narrower width obviously results in smaller memory footprints, but the
range should always suffice for the maximum number of entries or index value.
Reviewed By: penpornk
Differential Revision: https://reviews.llvm.org/D92126
Adding missing custom builders for AffineVectorLoadOp & AffineVectorStoreOp. In practice, it is difficult to correctly construct these ops without these builders (because the AffineMap is not included at construction time).
Differential Revision: https://reviews.llvm.org/D86380
This CL adds the ability to request different parallelization strategies
for the generate code. Every "parallel" loop is a candidate, and converted
to a parallel op if it is an actual for-loop (not a while) and the strategy
allows dense/sparse outer/inner parallelization.
This will connect directly with the work of @ezhulenev on parallel loops.
Still TBD: vectorization strategy
Reviewed By: penpornk
Differential Revision: https://reviews.llvm.org/D91978
CHECK_* directives for message() where added in Cmake 3.17, LLVM
requires 3.14 as minimum so they may not be intepreted correctly and
just print "CHECK_*" into the message stream. Replace them with STATUS.
Reviewed By: stellaraccident
Differential Revision: https://reviews.llvm.org/D91959
SameOperandsAndResultShape and ElementwiseMappable have similar
verification, but in general neither is strictly redundant with the
other.
Examples:
- SameOperandsAndResultShape allows
`"foo"(%0) : tensor<2xf32> -> tensor<?xf32> but ElementwiseMappable
does not.
- ElementwiseMappable allows
`select %scalar_pred, %true_tensor, %false_tensor` but
SameOperandsAndResultShape does not.
SameOperandsAndResultShape is redundant with ElementwiseMappable when
we can prove that the mixed scalar/non-scalar case cannot happen. In
those situations, `ElementwiseMappable & SameOperandsAndResultShape ==
ElementwiseMappable`:
- Ops with 1 operand: the case of mixed scalar and non-scalar operands
cannot happen since there is only one operand.
- When SameTypeOperands is also present, the mixed scalar/non-scalar
operand case cannot happen.
Differential Revision: https://reviews.llvm.org/D91396
Generalizes invariant handling to anything defined outside the Linalg op
(parameters and SSA computations). Fixes bug that was using parameter number
as tensor number.
Reviewed By: penpornk
Differential Revision: https://reviews.llvm.org/D91985
Introduce a conversion pass from SCF parallel loops to OpenMP dialect
constructs - parallel region and workshare loop. Loops with reductions are not
supported because the OpenMP dialect cannot model them yet.
The conversion currently targets only one level of parallelism, i.e. only
one top-level `omp.parallel` operation is produced even if there are nested
`scf.parallel` operations that could be mapped to `omp.wsloop`. Nested
parallelism support is left for future work.
Reviewed By: kiranchandramohan
Differential Revision: https://reviews.llvm.org/D91982
Print part of an op of the form:
```
<optional-offset-prefix>`[` offset-list `]`
<optional-size-prefix>`[` size-list `]`
<optional-stride-prefix>[` stride-list `]`
```
Also address some leftover nits.
Differential revision: https://reviews.llvm.org/D92031
Parse trailing part of an op of the form:
```
<optional-offset-prefix>`[` offset-list `]`
<optional-size-prefix>`[` size-list `]`
<optional-stride-prefix>[` stride-list `]`
```
Each entry in the offset, size and stride list either resolves to an integer
constant or an operand of index type.
Constants are added to the `result` as named integer array attributes with
name `OffsetSizeAndStrideOpInterface::getStaticOffsetsAttrName()` (resp.
`getStaticSizesAttrName()`, `getStaticStridesAttrName()`).
Append the number of offset, size and stride operands to `segmentSizes`
before adding it to `result` as the named attribute:
`OpTrait::AttrSizedOperandSegments<void>::getOperandSegmentSizeAttr()`.
Offset, size and stride operands resolution occurs after `preResolutionFn`
to give a chance to leading operands to resolve first, after parsing the
types.
```
ParseResult parseOffsetsSizesAndStrides(
OpAsmParser &parser, OperationState &result, ArrayRef<int> segmentSizes,
llvm::function_ref<ParseResult(OpAsmParser &, OperationState &)>
preResolutionFn = nullptr,
llvm::function_ref<ParseResult(OpAsmParser &)> parseOptionalOffsetPrefix =
nullptr,
llvm::function_ref<ParseResult(OpAsmParser &)> parseOptionalSizePrefix =
nullptr,
llvm::function_ref<ParseResult(OpAsmParser &)> parseOptionalStridePrefix =
nullptr);
```
Differential revision: https://reviews.llvm.org/D92030
MLIR C API use the `MlirStringRef` instead of `const char *` for the string type now. This patch sync the Python bindings with the C API modification.
Differential Revision: https://reviews.llvm.org/D92007
* Was missed in the initial submission and is required for a ConstantLike op.
* Also adds a materializeConstant hook to preserve it.
* Tightens up the argument constraint on tosa.const to match what is actually legal.
Differential Revision: https://reviews.llvm.org/D92040
This revision will make it easier to create new ops base on the strided memref abstraction outside of the std dialect.
OffsetSizeAndStrideOpInterface is an interface for ops that allow specifying mixed dynamic and static offsets, sizes and strides variadic operands.
Ops that implement this interface need to expose the following methods:
1. `getArrayAttrRanks` to specify the length of static integer
attributes.
2. `offsets`, `sizes` and `strides` variadic operands.
3. `static_offsets`, resp. `static_sizes` and `static_strides` integer
array attributes.
The invariants of this interface are:
1. `static_offsets`, `static_sizes` and `static_strides` have length
exactly `getArrayAttrRanks()`[0] (resp. [1], [2]).
2. `offsets`, `sizes` and `strides` have each length at most
`getArrayAttrRanks()`[0] (resp. [1], [2]).
3. if an entry of `static_offsets` (resp. `static_sizes`,
`static_strides`) is equal to a special sentinel value, namely
`ShapedType::kDynamicStrideOrOffset` (resp. `ShapedType::kDynamicSize`,
`ShapedType::kDynamicStrideOrOffset`), then the corresponding entry is
a dynamic offset (resp. size, stride).
4. a variadic `offset` (resp. `sizes`, `strides`) operand must be present
for each dynamic offset (resp. size, stride).
This interface is useful to factor out common behavior and provide support
for carrying or injecting static behavior through the use of the static
attributes.
Differential Revision: https://reviews.llvm.org/D92011
Use the correct interface base type name when generating attribute interfaces
with TabeGen.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D92023
1. Move ThreadPool ownership to the runtime, and wait for the async tasks completion in the destructor.
2. Remove MLIR_ASYNCRUNTIME_EXPORT from method definitions because they are unnecessary in .cpp files, as only function declarations need to be exported, not their definitions.
3. Fix concurrency bugs in group emplace and potential use-after-free in token emplace.
Tested internally 10k runs in `async.mlir` and `async-group.mlir`.
Fixed: https://bugs.llvm.org/show_bug.cgi?id=48267
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D91988
This file is intended to be included by other files, including
out-of-tree dialects, and makes more sense in `include` than in `lib`.
Depends On D91652
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D91961
Attributes represent additional data about an operation and are intended to be
modifiable during the lifetime of the operation. In the dialect-specific Python
bindings, attributes are exposed as properties on the operation class. Allow
for assigning values to these properties. Also support creating new and
deleting existing attributes through the generic "attributes" property of an
operation. Any validity checking must be performed by the op verifier after the
mutation, similarly to C++. Operations are not invalidated in the process: no
dangling pointers can be created as all attributes are owned by the context and
will remain live even if they are not used in any operation.
Introduce a Python Test dialect by analogy with the Test dialect and to avoid
polluting the latter with Python-specific constructs. Use this dialect to
implement a test for the attribute access and mutation API.
Reviewed By: stellaraccident, mehdi_amini
Differential Revision: https://reviews.llvm.org/D91652
It is a simple conversion that only requires to change the region argument
types, generalize it from ParallelOp.
Reviewed By: kiranchandramohan
Differential Revision: https://reviews.llvm.org/D91989
While this makes the unit tests a bit more verbose, this simplifies the creation of bindings because only the bidirectional mapping between the host language's string type and MlirStringRef need to be implemented.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D91905
Exposing some utility functions from Linalg to allow for promotion of
fused views outside of the core tile+fuse logic.
This is an alternative to patch D91322 which adds the promotion logic
to the tileAndFuse method. Downside with that approach is that it is
not easily customizable based on needs.
Differential Revision: https://reviews.llvm.org/D91503
Enhance the tile+fuse logic to allow fusing a sequence of operations.
Make sure the value used to obtain tile shape is a
SubViewOp/SubTensorOp. Current logic used to get the bounds of loop
depends on the use of `getOrCreateRange` method on `SubViewOp` and
`SubTensorOp`. Make sure that the value/dim used to compute the range
is from such ops. This fix is a reasonable WAR, but a btter fix would
be to make `getOrCreateRange` method be a method of `ViewInterface`.
Differential Revision: https://reviews.llvm.org/D90991
Previously, there was no way to add context to the diagnostic engine via the C API. Adding this ability makes it much easier to reason about memory ownership, particularly in reference-counted languages such as Swift. There are more details in the review comments.
Reviewed By: ftynse, mehdi_amini
Differential Revision: https://reviews.llvm.org/D91738
An SCF 'for' loop does not iterate if its lower bound is equal to its upper
bound. Remove loops where both bounds are the same SSA value as such bounds are
guaranteed to be equal. Similarly, remove 'parallel' loops where at least one
pair of respective lower/upper bounds is specified by the same SSA value.
Reviewed By: gysit
Differential Revision: https://reviews.llvm.org/D91880
The existing implementation of the conversion from SCF Parallel operation to
SCF "for" loops in order to further convert those loops to branch-based CFG has
been cloning the loop and reduction body operations into the new loop because
ConversionPatternRewriter was missing support for moving blocks while replacing
their arguments. This functionality now available, use it to implement the
conversion and avoid cloning operations, which may lead to doubling of the IR
size during the conversion.
In addition, this fixes an issue with converting nested SCF "if" conditionals
present in "parallel" operations that would cause the conversion infrastructure
to stop because of the repeated application of the pattern converting "newly"
created "if"s (which were in fact just moved). Arguably, this should be fixed
at the infrastructure level and this fix is a workaround.
Reviewed By: herhut
Differential Revision: https://reviews.llvm.org/D91955
This revision refactors code used in various Linalg transformations and makes it a first class citizen to the LinalgStructureOpInterface. This is in preparation to allowing more advanced Linalg behavior but is otherwise NFC.
Differential revision: https://reviews.llvm.org/D91863
- Fixes bug 48242 point 3 crash.
- Makes the improvments from points 1 & 2.
https://bugs.llvm.org/show_bug.cgi?id=48262
```
def RTLValueType : Type<CPred<"isRTLValueType($_self)">, "Type"> {
string cppType = "::mlir::Type";
}
```
Works now, but merely by happenstance. Parameters expects a `TypeParameter` class def or a string representing a c++ type but doesn't enforce it.
Reviewed By: lattner
Differential Revision: https://reviews.llvm.org/D91939
* Makes `pip install pybind11` do the right thing with no further config.
* Since we now require a version of pybind11 greater than many LTS OS installs (>=2.6), a more convenient way to get a recent version is preferable.
* Also adds the version spec to find_package so it will skip older versions that may be lying around.
* Tested the full matrix of old system install, no system install, pip install and no pip install.
Differential Revision: https://reviews.llvm.org/D91903
All these potential null pointer dereferences are reported by my static analyzer for null smart pointer dereferences, which has a different implementation from `alpha.cplusplus.SmartPtr`.
The checked pointers in this patch are initialized by Target::createXXX functions. When the creator function pointer is not correctly set, a null pointer will be returned, or the creator function may originally return a null pointer.
Some of them may not make sense as they may be checked before entering the function, but I fixed them all in this patch. I submit this fix because 1) similar checks are found in some other places in the LLVM codebase for the same return value of the function; and, 2) some of the pointers are dereferenced before they are checked, which may definitely trigger a null pointer dereference if the return value is nullptr.
Reviewed By: tejohnson, MaskRay, jpienaar
Differential Revision: https://reviews.llvm.org/D91410
Adds tests for full sum reduction (tensors summed up into scalars)
and the well-known sampled-dense-dense-matrix-product. Refines
the optimizations rules slightly to handle the summation better.
Reviewed By: penpornk
Differential Revision: https://reviews.llvm.org/D91818
Add transformation to be able to forward transfer_write into transfer_read
operation and to be able to remove dead transfer_write when a transfer_write is
overwritten before being read.
Differential Revision: https://reviews.llvm.org/D91321
Block merging in MLIR will incorrectly merge blocks with operations whose values are used outside of that block. This change forbids this behavior and provides a test where it is illegal to perform such a merge.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D91745
Add canoncalization patterns to remove zero-iteration 'for' loops, replace
single-iteration 'for' loops with their bodies; remove known-false conditionals
with no 'else' branch and replace conditionals with known value by the
respective region. Although similar transformations are performed at the CFG
level, not all flows reach that level, e.g., the GPU flow may want to remove
single-iteration loops before deciding on loop mapping to thread dimensions.
Reviewed By: herhut
Differential Revision: https://reviews.llvm.org/D91865
This canonicalization is useful to resolve loads into scalar values when
doing partial bufferization.
Differential Revision: https://reviews.llvm.org/D91855
This reverts commit f8284d21a8.
Revert "[mlir][Linalg] NFC: Expose some utility functions used for promotion."
This reverts commit 0c59f51592.
Revert "Remove unused isZero function"
This reverts commit 0f9f0a4046.
Change f8284d21 led to multiple failures in IREE compilation.
Depends On D89963
**Automatic reference counting algorithm outline:**
1. `ReturnLike` operations forward the reference counted values without
modifying the reference count.
2. Use liveness analysis to find blocks in the CFG where the lifetime of
reference counted values ends, and insert `drop_ref` operations after
the last use of the value.
3. Insert `add_ref` before the `async.execute` operation capturing the
value, and pairing `drop_ref` before the async body region terminator,
to release the captured reference counted value when execution
completes.
4. If the reference counted value is passed only to some of the block
successors, insert `drop_ref` operations in the beginning of the blocks
that do not have reference coutned value uses.
Reviewed By: silvas
Differential Revision: https://reviews.llvm.org/D90716
D78076 supports big endian in DenseElementsAttr, but does not work when
APInt has multiple words(the number of bits > 64). This patch updates
D78076 to support it.
This patch removed the fix in D78076 and re-implemented to support multiple words.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D80272
Exposing some utility functions from Linalg to allow for promotion of
fused views outside of the core tile+fuse logic.
This is an alternative to patch D91322 which adds the promotion logic
to the tileAndFuse method. Downside with that approach is that it is
not easily customizable based on needs.
Differential Revision: https://reviews.llvm.org/D91503
Null types are commonly used as an error marker. Catch them in the constructor
of Operation if they are present in the result type list, as otherwise this
could lead to further surprising behavior when querying op result types.
Fix AsyncToLLVM and StandardToLLVM that were using null types when constructing
operations.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D91770
These utilities are more closely associated with the buffer
optimizations and buffer deallocation than with the dialect conversion
stuff in Bufferize.h. So move them out.
This makes Bufferize.h very easy to understand and completely focused on
dialect conversion.
Differential Revision: https://reviews.llvm.org/D91563
These pointers do not need to be mutable. This has an affect that generated function signatures in the Swift bindings now use `UnsafePointer` instead of `UnsafeMutablePointer`.
Reviewed By: ftynse, mehdi_amini
Differential Revision: https://reviews.llvm.org/D91740
This commit does the renaming mentioned in the title in order to bring
'spv' dialect closer to the MLIR naming conventions.
Reviewed By: antiagainst
Differential Revision: https://reviews.llvm.org/D91792
This reverts commit 9b47525824
and falls back to the original parallel-iterators-as-leading-
dimensions convention. We can control the loop order by first
converting the named op into linalg.generic and then performing
interchange.
Reviewed By: nicolasvasilache, asaadaldien
Differential Revision: https://reviews.llvm.org/D91796
Additionally, clear a data structure to ensure a proper state if multiple conversion attempts are needed.
Differential Revision: https://reviews.llvm.org/D91791
This commit extends the functionality of the SPIR-V module combiner
library by adding new deduplication capabilities. In particular,
implementation of deduplication of global variables and specialization
constants, and functions is introduced.
For global variables, 2 variables are considered duplicate if they either
have the same descriptor set + binding or the same built_in attribute.
For specialization constants, 2 spec constants are considered duplicate if
they have the same spec_id attribute.
2 functions are deduplicated if they are identical. 2 functions are
identical if they have the same prototype, attributes, and body.
Reviewed By: antiagainst
Differential Revision: https://reviews.llvm.org/D90951
This commit does the renaming mentioned in the title in order to bring
'spv' dialect closer to the MLIR naming conventions.
Reviewed By: antiagainst
Differential Revision: https://reviews.llvm.org/D91797
This commit starts a new pass and patterns for converting Linalg
named ops to generic ops. This enables us to leverage the flexbility
from generic ops during transformations. Right now only linalg.conv
is supported; others will be added when useful.
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D91357
For intrinsics with multiple returns where one or more operands are overloaded, the overloaded type is inferred from the corresponding field of the resulting struct, instead of accessing the result directly.
As such, the hasResult parameter of LLVM_IntrOpBase (and derived classes) is replaced with numResults. TableGen for intrinsics also updated to populate this field with the total number of results.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D91680
This allows for operations that exclusively affect symbol operations to better describe their side effects.
Differential Revision: https://reviews.llvm.org/D91581
Rationale:
Make sure preconditions are tested already during verfication.
Currently, the only way a sparse rewriting rule can fail is if
(1) the linalg op does not have sparse annotations, or
(2) a yet to be handled operation is encounted inside the op
Reviewed By: penpornk
Differential Revision: https://reviews.llvm.org/D91748
Refactoring/clean-up step needed to add support for producer-consumer fusion
with multi-store producer loops and, in general, to implement more general
loop fusion strategies in Affine. It introduces the following changes:
- AffineLoopFusion pass now uses loop fusion utilities more broadly to compute
fusion legality (canFuseLoops utility) and perform the fusion transformation
(fuseLoops utility).
- Loop fusion utilities have been extended to deal with AffineLoopFusion
requirements and assumptions while preserving both loop fusion utilities and
AffineLoopFusion current functionality within a unified implementation.
'FusionStrategy' has been introduced for this purpose and, in the future, it
will allow us to have a single loop fusion core implementation that will produce
different fusion outputs depending on the strategy used.
- Improve separation of concerns for legality and profitability analysis:
'isFusionProfitable' no longer filters out illegal scenarios that 'canFuse'
didn't detect, or the other way around. 'canFuse' now takes loop dependences
into account to determine the fusion loop depth (producer-consumer fusion only).
- As a result, maximal fusion now doesn't require any profitability analysis.
- Slices are now computed only once and reused across the legality, profitability
and fusion transformation steps (producer-consumer).
- Refactor some utilities and remove redundant copies of them.
This patch is NFCI and should preserve the existing functionality of both the
AffineLoopFusion pass and the affine fusion utilities.
Reviewed By: andydavis1, bondhugula
Differential Revision: https://reviews.llvm.org/D90798
This commit does the renaming mentioned in the title in order to bring
'spv' dialect closer to the MLIR naming conventions.
Reviewed By: antiagainst
Differential Revision: https://reviews.llvm.org/D91715
Make the interface match the one of ConvertToLLVMPattern::getDataPtr() (to be removed in a separate change).
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D91599
The side effect infrastructure is based on the Effect and Resource class
templates, instances of instantiations of which are constructed as
thread-local singletons. With this scheme, it is impossible to further
parameterize either of those, or the EffectInstance class that contains
pointers to an Effect and Resource instances. Such a parameterization is
necessary to express more detailed side effects, e.g. those of a loop or
a function call with affine operations inside where it is possible to
precisely specify the slices of accessed buffers.
Include an additional Attribute to EffectInstance class for further
parameterization. This allows to leverage the dialect-specific
registration and uniquing capabilities of the attribute infrastructure
without requiring Effect or Resource instantiations to be attached to a
dialect themselves.
Split out the generic part of the side effect Tablegen classes into a
separate file to avoid generating built-in MemoryEffect interfaces when
processing any .td file that includes SideEffectInterfaceBase.td.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D91493
- Add `mlirElementsAttrGetType` C API.
- Add `def_buffer` binding to PyDenseElementsAttribute.
- Implement the protocol to access the buffer.
Differential Revision: https://reviews.llvm.org/D91021
* I had missed the note about "Standard size" in the docs. On Windows, the 'l' types are 32bit.
* This fixes the only failing MLIR-Python test on Windows.
Differential Revision: https://reviews.llvm.org/D91283
On some platform (like WebAssembly), alignof(mlir::AttributeStorage) is 4 instead of 8. As a result, it makes the program crashes since PointerLikeTypeTraits<mlir::Attribute>::NumLowBitsAvailable is 3.
So I explicitly set the alignment of mlir::AttributeStoarge to 64 bits, and set PointerLikeTypeTraits<mlir::Attribute>::NumLowBitsAvailable according to it.
I also fixed an another related error (alignof(NamedAttribute) -> alignof(DictionaryAttributeStorage)) based on reviewer's comments.
Reviewed By: dblaikie, rriddle
Differential Revision: https://reviews.llvm.org/D91062
As discussed in https://llvm.discourse.group/t/mlir-support-for-sparse-tensors/2020
this CL is the start of sparse tensor compiler support in MLIR. Starting with a
"dense" kernel expressed in the Linalg dialect together with per-dimension
sparsity annotations on the tensors, the compiler automatically lowers the
kernel to sparse code using the methods described in Fredrik Kjolstad's thesis.
Many details are still TBD. For example, the sparse "bufferization" is purely
done locally since we don't have a global solution for propagating sparsity
yet. Furthermore, code to input and output the sparse tensors is missing.
Nevertheless, with some hand modifications, the generated MLIR can be
easily converted into runnable code already.
Reviewed By: nicolasvasilache, ftynse
Differential Revision: https://reviews.llvm.org/D90994
std.alloc only supports memrefs with identity layout, which means we can simplify the lowering to LLVM and compute strides only from (static and dynamic) sizes.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D91549
This commit does the renaming mentioned in the title in order to bring
`spv` dialect closer to the MLIR naming conventions.
Reviewed By: antiagainst
Differential Revision: https://reviews.llvm.org/D91609
This utility function is helpful for dialect-specific builders that need
to access the context through location, and the location itself may be
either provided as an argument or expected to be recovered from the
implicit location stack.
Reviewed By: stellaraccident
Differential Revision: https://reviews.llvm.org/D91623
The shape of the result of a dynamic_tensor_from_elements is defined via its
result type and operands. We already fold dim operations when they reference
one of the statically sized dimensions. Now, also fold dim on the dynamically
sized dimensions by picking the corresponding operand.
Differential Revision: https://reviews.llvm.org/D91616
It may be necessary for interface methods to process or return variables with
the interface class type, in particular for attribute and type interfaces that
can return modified attributes and types that implement the same interface.
However, the code generated by ODS in this case would not compile because the
signature (and the body if provided) appear in the definition of the Model
class and before the interface class, which derives from the Model. Change the ODS
interface method generator to emit only method declarations in the Model class
itself, and emit method definitions after the interface class. Mark as "inline"
since their definitions are still emitted in the header and are no longer
implicitly inline. Add a forward declaration of the interface class before the
Concept+Model classes to make the class name usable in declarations.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D91499
In ODS, attributes of an operation can be provided as a part of the "arguments"
field, together with operands. Such attributes are accepted by the op builder
and have accessors generated.
Implement similar functionality for ODS-generated op-specific Python bindings:
the `__init__` method now accepts arguments together with operands, in the same
order as in the ODS `arguments` field; the instance properties are introduced
to OpView classes to access the attributes.
This initial implementation accepts and returns instances of the corresponding
attribute class, and not the underlying values since the mapping scheme of the
value types between C++, C and Python is not yet clear. Default-valued
attributes are not supported as that would require Python to be able to parse
C++ literals.
Since attributes in ODS are tightely related to the actual C++ type system,
provide a separate Tablegen file with the mapping between ODS storage type for
attributes (typically, the underlying C++ attribute class), and the
corresponding class name. So far, this might look unnecessary since all names
match exactly, but this is not necessarily the cases for non-standard,
out-of-tree attributes, which may also be placed in non-default namespaces or
Python modules. This also allows out-of-tree users to generate Python bindings
without having to modify the bindings generator itself. Storage type was
preferred over the Tablegen "def" of the attribute class because ODS
essentially encodes attribute _constraints_ rather than classes, e.g. there may
be many Tablegen "def"s in the ODS that correspond to the same attribute type
with additional constraints
The presence of the explicit mapping requires the change in the .td file
structure: instead of just calling the bindings generator directly on the main
ODS file of the dialect, it becomes necessary to create a new file that
includes the main ODS file of the dialect and provides the mapping for
attribute types. Arguably, this approach offers better separability of the
Python bindings in the build system as the main dialect no longer needs to know
that it is being processed by the bindings generator.
Reviewed By: stellaraccident
Differential Revision: https://reviews.llvm.org/D91542
These includes have been deprecated in favor of BuiltinDialect.h, which contains the definitions of ModuleOp and FuncOp.
Differential Revision: https://reviews.llvm.org/D91572
This has been a long standing TODO, and cleans up a bit of IR/. This will also make it easier to move FuncOp out of IR/ at some point in the future. For now, Module.h and Function.h just forward BuiltinDialect.h. These files will be removed in a followup.
Differential Revision: https://reviews.llvm.org/D91571
Some rewriters take more iterations to converge, add a parameter to overwrite
the built-in maximum iteration count.
Fix PR48073.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D91553
This replaces the old type decomposition logic that was previously mixed
into bufferization, and makes it easily accessible.
This also deletes TestFinalizingBufferize, because after we remove the type
decomposition, it doesn't do anything that is not already provided by
func-bufferize.
Differential Revision: https://reviews.llvm.org/D90899
The current code allows strided layouts, but the number of elements allocated is ambiguous. It could be either the number of elements in the shape (the current implementation), or the amount of elements required to not index out-of-bounds with the given maps (which would require evaluating the layout map).
If we require the canonical layouts, the two will be the same.
Reviewed By: nicolasvasilache, ftynse
Differential Revision: https://reviews.llvm.org/D91523
This adds a simple definition of a "workshare loop" operation for
the OpenMP MLIR dialect, excluding the "reduction" and "allocate"
clauses and without a custom parser and pretty printer.
The schedule clause also does not yet accept the modifiers that are
permitted in OpenMP 5.0.
Co-authored-by: Kiran Chandramohan <kiran.chandramohan@arm.com>
Reviewed By: ftynse, clementval
Differential Revision: https://reviews.llvm.org/D86071
The logic of vector on boolean was missed. This patch adds the logic and test on
it.
Reviewed By: mravishankar
Differential Revision: https://reviews.llvm.org/D91403
scf.parallel is currently not a good fit for tiling on tensors.
Instead provide a path to parallelism directly through scf.for.
For now, this transformation ignores the distribution scheme and always does a block-cyclic mapping (where block is the tile size).
Differential revision: https://reviews.llvm.org/D90475
motivated by a refactoring in the new sparse code (yet to be merged), this avoids some lengthy code dup
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D91465
Support multi-dimension vector for InsertMap/ExtractMap op and update the
transformations. Currently the relation between IDs and dimension is implicitly
deduced from the types. We can then calculate an AffineMap based on it. In the
future the AffineMap could be part of the operation itself.
Differential Revision: https://reviews.llvm.org/D90995
Depends On D89958
1. Adds `async.group`/`async.awaitall` to group together multiple async tokens/values
2. Rewrite scf.parallel operation into multiple concurrent async.execute operations over non overlapping subranges of the original loop.
Example:
```
scf.for (%i, %j) = (%lbi, %lbj) to (%ubi, %ubj) step (%si, %sj) {
"do_some_compute"(%i, %j): () -> ()
}
```
Converted to:
```
%c0 = constant 0 : index
%c1 = constant 1 : index
// Compute blocks sizes for each induction variable.
%num_blocks_i = ... : index
%num_blocks_j = ... : index
%block_size_i = ... : index
%block_size_j = ... : index
// Create an async group to track async execute ops.
%group = async.create_group
scf.for %bi = %c0 to %num_blocks_i step %c1 {
%block_start_i = ... : index
%block_end_i = ... : index
scf.for %bj = %c0 t0 %num_blocks_j step %c1 {
%block_start_j = ... : index
%block_end_j = ... : index
// Execute the body of original parallel operation for the current
// block.
%token = async.execute {
scf.for %i = %block_start_i to %block_end_i step %si {
scf.for %j = %block_start_j to %block_end_j step %sj {
"do_some_compute"(%i, %j): () -> ()
}
}
}
// Add produced async token to the group.
async.add_to_group %token, %group
}
}
// Await completion of all async.execute operations.
async.await_all %group
```
In this example outer loop launches inner block level loops as separate async
execute operations which will be executed concurrently.
At the end it waits for the completiom of all async execute operations.
Reviewed By: ftynse, mehdi_amini
Differential Revision: https://reviews.llvm.org/D89963
The index type does not have a bitsize and hence the size of corresponding allocations cannot be computed. Instead, the promotion pass now has an explicit option to specify the size of index.
Differential Revision: https://reviews.llvm.org/D91360
This exposes a hook to configure legality of operations such that only
`scf.parallel` operations that have mapping attributes are marked as
illegal. Consequently, the transformation can now also be applied to
mixed forms.
Differential Revision: https://reviews.llvm.org/D91340
A recent refactoring removed the need to interleave verifier passes and instead opted to verify during the normal execution of passes instead. As such, the old verify pass is no longer necessary and can be removed.
Differential Revision: https://reviews.llvm.org/D91212
This revision adds support in the parser/printer for "deferrable" aliases, i.e. those that can be resolved after printing has finished. This allows for printing aliases for operation locations after the module instead of before, i.e. this is now supported:
```
"foo.op"() : () -> () loc(#loc)
#loc = loc("some_location")
```
Differential Revision: https://reviews.llvm.org/D91227
This removes the need to have an explicit `cast<>` given that we always know it `isa` instance of the interface.
Differential Revision: https://reviews.llvm.org/D91304
Some users have native c++ data types that correspond to floating point values stored within a DenseElementsAttr that do not have a corresponding native C++ data type(e.g. bfloat16/half/etc). This revision allows for such users to use those native types directly, and removes the need to go through APFloat when the much faster native value path is available.
Differential Revision: https://reviews.llvm.org/D91402
07f1047f41 changed the CMake detection to use find_package(Python3 ...
but didn't update the lit configuration to use the expected Python3_EXECUTABLE
cmake variable to point to the interpreter path.
This resulted in an empty path on MacOS.
- Move isSupportedMemRefType() to ConvertToLLVMPatterns and check if the
memref element type is supported there.
Differential Revision: https://reviews.llvm.org/D91374
The previous code defined it as allocating a new memref for its result.
However, this is not how it is treated by the dialect conversion framework,
that does the equivalent of inserting and folding it away internally
(even independent of any canonicalization patterns that we have
defined).
The semantics as they were previously written were also very
constraining: Nontrivial analysis is needed to prove that the new
allocation isn't needed for correctness (e.g. to avoid aliasing).
By removing those semantics, we avoid losing that information.
Differential Revision: https://reviews.llvm.org/D91382
We lower them to a std.global_memref (uniqued by constant value) + a
std.get_global_memref to produce the corresponding memref value.
This allows removing Linalg's somewhat hacky lowering of tensor
constants, now that std properly supports this.
Differential Revision: https://reviews.llvm.org/D91306
It was incorrect in the presence of a tensor argument with multiple
uses.
The bufferization of subtensor_insert was writing into a converted
memref operand, but there is no guarantee that the converted memref for
that operand is safe to write into. In this case, the same converted
memref is written to in-place by the subtensor_insert bufferization,
violating the tensor-level semantics.
I left some comments in a TODO about ways forward on this. I will be
working actively on this problem in the coming days.
Differential Revision: https://reviews.llvm.org/D91371
- Remove the default valued arguments from these functions.
- Besides FuncOp, looks like no other in-tree op is using these functions.
Differential Revision: https://reviews.llvm.org/D91369
The tokens are already handled by the lexer. This revision exposes them
through the parser interface.
This revision also adds missing functions for question mark parsing and
completes the list of valid punctuation tokens in the documentation.
Differential Revision: https://reviews.llvm.org/D90907
Add an ODS-backed generator of default builders. This currently does not
support operation with attribute arguments, for which the builder is
just ignored. Attribute support will be introduced separately for
builders and accessors.
Default builders are always generated with the same number of result and
operand groups as the ODS specification, i.e. one group per each operand
or result. Optional elements accept None but cannot be omitted. Variadic
groups accept iterable objects and cannot be replaced with a single
object.
For some operations, it is possible to infer the result type given the
traits, but most traits rely on inline pieces of C++ that we cannot
(yet) forward to Python bindings. Since the Ops where the inference is
possible (having the `SameOperandAndResultTypes` trait or
`TypeMatchesWith` without transform field) are a small minority, they
also require the result type to make the builder syntax more consistent.
Reviewed By: stellaraccident
Differential Revision: https://reviews.llvm.org/D91190
Added documentation about the bufferization features.
Furthermore, the usage of pre- and post-processing is described.
This also includes information about optimization functionalities.
Differential Revision: https://reviews.llvm.org/D90675
This change does two main things
1) An operation might have multiple dependences to the same
producer. Not tracking them correctly can result in incorrect code
generation with fusion. To rectify this the dependence tracking
needs to also have the operand number in the consumer.
2) Improve the logic used to find the fused loops making it easier to
follow. The only constraint for fusion is that linalg ops (on
buffers) have update semantics for the result. Fusion should be
such that only one iteration of the fused loop (which is also a
tiled loop) must touch only one (disjoint) tile of the output. This
could be relaxed by allowing for recomputation that is the default
when oeprands are tensors, or can be made legal with promotion of
the fused view (in future).
Differential Revision: https://reviews.llvm.org/D90579
Exposing the C versions of the methods of the sparse runtime support lib
through header files will enable using the same methods in an MLIR program
as well as a C++ program, which will simplify future benchmarking comparisons
(e.g. comparing MLIR generated code with eigen for Matrix Market sparse matrices).
Reviewed By: penpornk
Differential Revision: https://reviews.llvm.org/D91316
This CL integrates the new sparse annotations (hereto merely added as fully
transparent attributes) more tightly to the generic linalg op in order to add
verification of the annotations' consistency as well as to make make other
passes more aware of their presence (in the long run, rewriting rules must
preserve the integrity of the annotations).
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D91224
Previous the textual form of the pass pipeline would implicitly nest,
instead we opt for the explicit form here: this has less surprise.
This also avoids asserting in the bindings when passing a pass pipeline
with incorrect nesting.
Differential Revision: https://reviews.llvm.org/D91233
If block A and B are in different regions and region of A is not an ancestor of
B, either A is included in region of B or the two regions are disjoint. In both
case A doesn't post-dominate B.
Differential Revision: https://reviews.llvm.org/D91225
The MLIR_ASYNCRUNTIME_EXPORT macro was being defined to be either
__declspec(dllexport) or __declspec(dllimport), depending on whether
mlir_c_runner_utils_EXPORTS is defined. The latter was a copy/paste
error and should have been mlir_async_runtime_EXPORTS.
Additionally, the uses of that macro in the .cpp file were unnecessary,
as only function declarations need to be exported, not their definitions.
Differential Revision: https://reviews.llvm.org/D91196
The previous logic for inlining a region A with N blocks into region B
would produce incorrect results on rollback for N greater than 1. This
rollback logic would leave blocks 1..N in region B and only move block 0
to region A.
The new inlining action recording stores the block move actions from N-1
to 0. Now on roll back, block 0 is moved to region A and then 1..N is
appended to the list of blocks in region A.
Differential Revision: https://reviews.llvm.org/D91185
This adds getters for `llvm.align` and `llvm.noalias` strings that are used
as attribute names in the llvm dialect.
Differential Revision: https://reviews.llvm.org/D91166
I would like to use this for D90589 to switch std.alloc to assemblyFormat.
Hopefully it will be useful in other places as well.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D91068
This patch converts elementwise ops on tensors to linalg.generic ops
with the same elementwise op in the payload (except rewritten to
operate on scalars, obviously). This is a great form for later fusion to
clean up.
E.g.
```
// Compute: %arg0 + %arg1 - %arg2
func @f(%arg0: tensor<?xf32>, %arg1: tensor<?xf32>, %arg2: tensor<?xf32>) -> tensor<?xf32> {
%0 = addf %arg0, %arg1 : tensor<?xf32>
%1 = subf %0, %arg2 : tensor<?xf32>
return %1 : tensor<?xf32>
}
```
Running this through
`mlir-opt -convert-std-to-linalg -linalg-fusion-for-tensor-ops` we get:
```
func @f(%arg0: tensor<?xf32>, %arg1: tensor<?xf32>, %arg2: tensor<?xf32>) -> tensor<?xf32> {
%0 = linalg.generic {indexing_maps = [#map0, #map0, #map0, #map0], iterator_types = ["parallel"]} ins(%arg0, %arg1, %arg2 : tensor<?xf32>, tensor<?xf32>, tensor<?xf32>) {
^bb0(%arg3: f32, %arg4: f32, %arg5: f32): // no predecessors
%1 = addf %arg3, %arg4 : f32
%2 = subf %1, %arg5 : f32
linalg.yield %2 : f32
} -> tensor<?xf32>
return %0 : tensor<?xf32>
}
```
So the elementwise ops on tensors have nicely collapsed into a single
linalg.generic, which is the form we want for further transformations.
Differential Revision: https://reviews.llvm.org/D90354
This patch adds an `ElementwiseMappable` trait as discussed in the RFC
here:
https://llvm.discourse.group/t/rfc-std-elementwise-ops-on-tensors/2113/23
This trait can power a number of transformations and analyses.
A subsequent patch adds a convert-elementwise-to-linalg pass exhibits
how this trait allows writing generic transformations.
See https://reviews.llvm.org/D90354 for that patch.
This trait slightly changes some verifier messages, but the diagnostics
are usually about as good. I fiddled with the ordering of the trait in
the .td file trait lists to minimize the changes here.
Differential Revision: https://reviews.llvm.org/D90731
This only exposes the ability to round-trip a textual pipeline at the
moment.
To exercise it, we also bind the libTransforms in a new Python extension. This
does not include any interesting bindings, but it includes all the
mechanism to add separate native extensions and load them dynamically.
As such passes in libTransforms are only registered after `import
mlir.transforms`.
To support this global registration, the TableGen backend is also
extended to bind to the C API the group registration for passes.
Reviewed By: stellaraccident
Differential Revision: https://reviews.llvm.org/D90819
This patch introduces a new conversion pattern for `spv.ExecutionMode`.
`spv.ExecutionMode` may contain important information about the entry
point, which we want to preserve. For example, `LocalSize` provides
information about the work-group size that can be reused. Hence, the
pattern for entry-point ops changes to the following:
- `spv.EntryPoint` is still simply removed
- Info from `spv.ExecutionMode` is used to create a global struct variable,
which looks like:
```
struct {
int32_t executionMode;
int32_t values[]; // optional values
};
```
Reviewed By: mravishankar
Differential Revision: https://reviews.llvm.org/D89989
Introduce an ODS/Tablegen backend producing Op wrappers for Python bindings
based on the ODS operation definition. Usage:
mlir-tblgen -gen-python-op-bindings -Iinclude <path/to/Ops.td> \
-bind-dialect=<dialect-name>
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D90960
Slicing, that is element access with `[being🔚step]` structure, is
a common Python idiom for sequence-like containers. It is also necessary
to support custom accessor for operations with variadic operands and
results (an operation an return a slice of its operands that correspond
to the given variadic group).
Add generic utility to support slicing in Python bindings and use it
for operation operands and results.
Depends On D90923
Reviewed By: stellaraccident, mehdi_amini
Differential Revision: https://reviews.llvm.org/D90936
VectorInsertDynamicOp in SPIRV dialect
conversion from vector.insertelement to spirv VectorInsertDynamicOp
Differential Revision: https://reviews.llvm.org/D90927
Locations often get very long and clutter up operations when printed inline with them. This revision adds support for using aliases with trailing operation locations, and makes printing with aliases the default behavior. Aliases in the trailing location take the form `loc(<alias>)`, such as `loc(#loc0)`. As with all aliases, using `mlir-print-local-scope` can be used to disable them and get the inline behavior.
Differential Revision: https://reviews.llvm.org/D90652
This revision refactors the way that attributes/types are considered when generating aliases. Instead of considering all of the attributes/types of every operation, we perform a "fake" print step that prints the operations using a dummy printer to collect the attributes and types that would actually be printed during the real process. This removes a lot of attributes/types from consideration that generally won't end up in the final output, e.g. affine map attributes in an `affine.apply`/`affine.for`.
This resolves a long standing TODO w.r.t aliases, and helps to have a much cleaner textual output format. As a datapoint to the latter, as part of this change several tests were identified as testing for the presence of attributes aliases that weren't actually referenced by the custom form of any operation.
To ensure that this wouldn't cause a large degradation in compile time due to the second full print, I benchmarked this change on a very large module with a lot of operations(The file is ~673M/~4.7 million lines long). This file before this change take ~6.9 seconds to print in the custom form, and ~7 seconds after this change. In the custom assembly case, this added an average of a little over ~100 miliseconds to the compile time. This increase was due to the way that argument attributes on functions are structured and how they get printed; i.e. with a better representation the negative impact here can be greatly decreased. When printing in the generic form, this revision had no observable impact on the compile time. This benchmarking leads me to believe that the impact of this change on compile time w.r.t printing is closely related to `print` methods that perform a lot of additional/complex processing outside of the OpAsmPrinter.
Differential Revision: https://reviews.llvm.org/D90512
For consistency with the IRBuilder, OpenMPIRBuilder has method names starting with 'Create'. However, the LLVM coding style has methods names starting with lower case letters, as all other OpenMPIRBuilder already methods do. The clang-tidy configuration used by Phabricator also warns about the naming violation, adding noise to the reviews.
This patch renames all `OpenMPIRBuilder::CreateXYZ` methods to `OpenMPIRBuilder::createXYZ`, and updates all in-tree callers.
I tested check-llvm, check-clang, check-mlir and check-flang to ensure that I did not miss a caller.
Reviewed By: mehdi_amini, fghanim
Differential Revision: https://reviews.llvm.org/D91109
This allows us to omit one level of indirection when querying
the information from the underlying attribute.
Reviewed By: hanchung, ThomasRaoux
Differential Revision: https://reviews.llvm.org/D91080
The pass combines patterns of ExpandAtomic, ExpandMemRefReshape,
StdExpandDivs passes. The pass is meant to legalize STD for conversion to LLVM.
Differential Revision: https://reviews.llvm.org/D91082
- Change syntax for FuncOp to be `func <visibility>? @name` instead of printing the
visibility in the attribute dictionary.
- Since printFunctionLikeOp() and parseFunctionLikeOp() are also used by other
operations, make the "inline visibility" an opt-in feature.
- Updated unit test to use and check the new syntax.
Differential Revision: https://reviews.llvm.org/D90859
- Convert `global_memref` to LLVM::GlobalOp.
- Convert `get_global_memref` to a memref descriptor with a pointer to the first element
of the global stashed in it.
- Extend unit test and a mlir-cpu-runner test to validate the generated LLVM IR.
Differential Revision: https://reviews.llvm.org/D90803
- When a block is not empty and does not end with a terminator, flag the error on the
last operation of the block instead of the start of the block.
Differential Revision: https://reviews.llvm.org/D90988
The legalization did not forward the listener which prevents dynamic
legalization and prevents rollbacks. This handled that and then changed
the associated pass to support all other std ops to support partial
conversion.
Previously, this lowering was failing, but due to the
initial bug, the op's modifications were not reverted, and thus the
pattern matching succeeded.
Differential Revision: https://reviews.llvm.org/D91079
Enumerating elements in these classes is necessary to enable custom
operand accessors for variadic operands.
Depends On D90919
Reviewed By: stellaraccident
Differential Revision: https://reviews.llvm.org/D90923
Operations in a MLIR have a dictionary of attributes attached. Expose
those to Python bindings through a pseudo-container that can be indexed
either by attribute name, producing a PyAttribute, or by a contiguous
index for enumeration purposes, producing a PyNamedAttribute.
Depends On D90917
Reviewed By: stellaraccident
Differential Revision: https://reviews.llvm.org/D90919
* Wires them in the same way that peer-dialect test passes are registered.
* Fixes the build for -DLLVM_INCLUDE_TESTS=OFF.
Differential Revision: https://reviews.llvm.org/D91022
Since SPIR-V module has an optional name, this patch
makes a change to pass it to `ModuleOp` during conversion.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D90904
The tests are intended to exercise the public C API and will link to a
specific shared library exposing only the C API, this library itself may
link to libMLIR.so.
If we link some LLVM library statically in the test themselves, we end
up with duplicated cl::opt registrations in LLVM. A possible setup if
these libraries were needed could be to link libMLIR.so directly when
available and link statically when it isn't available (in which case the
libary exposing the C API would be statically link and isolated from the
cl::opt registry, hopefully).
Differential Revision: https://reviews.llvm.org/D90993
I ran into this pattern when converting elementwise ops like
`addf %arg0, %arg : tensor<?xf32>` to linalg. Redundant arguments can
also easily arise from linalg-fusion-for-tensor-ops.
Also, fix some small bugs in the logic in
LinalgStructuredOpsInterface.td.
Differential Revision: https://reviews.llvm.org/D90812
The PyOpOperands container was erroneously constructing objects for
individual operands as PyOpResult. Operands in fact are just values,
which may or may not be results of another operation. The code would
eventually crash if the operand was a block argument. Add a test that
exercises the behavior that previously led to crashes.
Reviewed By: stellaraccident
Differential Revision: https://reviews.llvm.org/D90917
We were discussing on discord regarding the need for extension-based systems like Python to dynamically link against MLIR (or else you can only have one extension that depends on it). Currently, when I set that up, I piggy-backed off of the flag that enables build libLLVM.so and libMLIR.so and depended on libMLIR.so from the python extension if shared library building was enabled. However, this is less than ideal.
In the current setup, libMLIR.so exports both all symbols from the C++ API and the C-API. The former is a kitchen sink and the latter is curated. We should be splitting them and for things that are properly factored to depend on the C-API, they should have the option to *only* depend on the C-API, and we should build that shared library no matter what. Its presence isn't just an optimization: it is a key part of the system.
To do this right, I needed to:
* Introduce visibility macros into mlir-c/Support.h. These should work on both *nix and windows as-is.
* Create a new libMLIRPublicAPI.so with just the mlir-c object files.
* Compile the C-API with -fvisibility=hidden.
* Conditionally depend on the libMLIR.so from libMLIRPublicAPI.so if building libMLIR.so (otherwise, also links against the static libs and will produce a mondo libMLIRPublicAPI.so).
* Disable re-exporting of static library symbols that come in as transitive deps.
This gives us a dynamic linked C-API layer that is minimal and should work as-is on all platforms. Since we don't support libMLIR.so building on Windows yet (and it is not very DLL friendly), this will fall back to a mondo build of libMLIRPublicAPI.so, which has its uses (it is also the most size conscious way to go if you happen to know exactly what you need).
Sizes (release/stripped, Ubuntu 20.04):
Shared library build:
libMLIRPublicAPI.so: 121Kb
_mlir.cpython-38-x86_64-linux-gnu.so: 1.4Mb
mlir-capi-ir-test: 135Kb
libMLIR.so: 21Mb
Static build:
libMLIRPublicAPI.so: 5.5Mb (since this is a "static" build, this includes the MLIR implementation as non-exported code).
_mlir.cpython-38-x86_64-linux-gnu.so: 1.4Mb
mlir-capi-ir-test: 44Kb
Things like npcomp and circt which bring their own dialects/transforms/etc would still need the shared library build and code that links against libMLIR.so (since it is all C++ interop stuff), but hopefully things that only depend on the public C-API can just have the one narrow dep.
I spot checked everything with nm, and it looks good in terms of what is exporting/importing from each layer.
I'm not in a hurry to land this, but if it is controversial, I'll probably split off the Support.h and API visibility macro changes, since we should set that pattern regardless.
Reviewed By: mehdi_amini, benvanik
Differential Revision: https://reviews.llvm.org/D90824
There exists a generic folding facility that folds the operand of a memref_cast
into users of memref_cast that support this. However, it was not used for the
memref_cast itself. Fix it to enable elimination of memref_cast chains such as
%1 = memref_cast %0 : A to B
%2 = memref_cast %1 : B to A
that is achieved by combining the folding with the existing "A to A" cast
elimination.
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D90910
The CMake macro refactoring had a hardcoded value left instead of using
the function argument.
Didn't catch it locally before because it required a clean build to
trigger.
This target will depend on each individual extension and represent "all"
Python bindings in the repo. User projects can get a finer grain control by
depending directly on some individual targets as needed.
The Python bindings now require -DLLVM_BUILD_LLVM_DYLIB=ON to build.
This change is needed to be able to build multiple Python native
extension without having each of them embedding a copy of MLIR, which
would make them incompatible with each other. Instead they should all
link to the same copy of MLIR.
Differential Revision: https://reviews.llvm.org/D90813
This functionality is superceded by BufferResultsToOutParams pass (see
https://reviews.llvm.org/D90071) for users the require buffers to be
out-params. That pass should be run immediately after all tensors are gone from
the program (before buffer optimizations and deallocation insertion), such as
immediately after a "finalizing" bufferize pass.
The -test-finalizing-bufferize pass now defaults to what used to be the
`allowMemrefFunctionResults=true` flag. and the
finalizing-bufferize-allowed-memref-results.mlir file is moved
to test/Transforms/finalizing-bufferize.mlir.
Differential Revision: https://reviews.llvm.org/D90778
TestDialect has many operations and they all live in ::mlir namespace.
Sometimes it is not clear whether the ops used in the code for the test passes
belong to Standard or to Test dialects.
Also, with this change it is easier to understand what test passes registered
in mlir-opt are actually passes in mlir/test.
Differential Revision: https://reviews.llvm.org/D90794
The test file is a long list of functions, followed by equally long FileCheck
comments inside "main". Distribute FileCheck comments closer to the functions
that produce the output we are checking.
Reviewed By: mehdi_amini, stellaraccident
Differential Revision: https://reviews.llvm.org/D90743
The LinalgDependenceGraph and alias analysis provide the necessary analysis for the Linalg fusion on buffers case.
However this is not enough for linalg on tensors which require proper memory effects to play nicely with DCE and other transformations.
This revision adds side effects to Linalg ops that were previously missing and has 2 consequences:
1. one example in the copy removal pass now fails since the linalg.generic op has side effects and the pass does not perform alias analysis / distinguish between reads and writes.
2. a few examples in fusion-tensor.mlir need to return the resulting tensor otherwise DCE automatically kicks in as part of greedy pattern application.
Differential Revision: https://reviews.llvm.org/D90762
VectorExtractDynamicOp in SPIRV dialect
conversion from vector.extractelement to spirv VectorExtractDynamicOp
Differential Revision: https://reviews.llvm.org/D90679
Per spec, vector sizes 8 and 16 are allowed when Vector16 capability is present.
This change expands the limitation of vector sizes to accept these sizes.
Differential Revision: https://reviews.llvm.org/D90683
The previous behavior was fragile when building an OpPassManager using a
string, as it was forcing the client to ensure the string to outlive the
entire PassManager.
This isn't a performance sensitive area either that would justify
optimizing further.
- The ODS description was using an old syntax that was updated during the review.
This fixes the ODS description to match the current syntax.
Differential Revision: https://reviews.llvm.org/D90797
- Eliminate duplicated information about mapping from memref -> its descriptor fields
by consolidating that mapping in two functions: getMemRefDescriptorFields and
getUnrankedMemRefDescriptorFields.
- Change convertMemRefType() and convertUnrankedMemRefType() to use these
functions.
- Remove convertMemrefSignature and convertUnrankedMemrefSignature.
Differential Revision: https://reviews.llvm.org/D90707
Previously, linalg-bufferize was a "finalizing" bufferization pass (it
did a "full" conversion). This wasn't great because it couldn't be used
composably with other bufferization passes like std-bufferize and
scf-bufferize.
This patch makes linalg-bufferize a composable bufferization pass.
Notice that the integration tests are switched over to using a pipeline
of std-bufferize, linalg-bufferize, and (to finalize the conversion)
func-bufferize. It all "just works" together.
While doing this transition, I ran into a nasty bug in the 1-use special
case logic for forwarding init tensors. That logic, while
well-intentioned, was fundamentally flawed, because it assumed that if
the original tensor value had one use, then the converted memref could
be mutated in place. That assumption is wrong in many cases. For
example:
```
%0 = some_tensor : tensor<4xf32>
br ^bb0(%0, %0: tensor<4xf32>, tensor<4xf32>)
^bb0(%bbarg0: tensor<4xf32>, %bbarg1: tensor<4xf32>)
// %bbarg0 is an alias of %bbarg1. We cannot safely write
// to it without analyzing uses of %bbarg1.
linalg.generic ... init(%bbarg0) {...}
```
A similar example can happen in many scenarios with function arguments.
Even more sinister, if the converted memref is produced by a
`std.get_global_memref` of a constant global memref, then we might
attempt to write into read-only statically allocated storage! Not all
memrefs are writable!
Clearly, this 1-use check is not a local transformation that we can do
on the fly in this pattern, so I removed it.
The test is now drastically shorter and I basically rewrote the CHECK
lines from scratch because:
- the new composable linalg-bufferize just doesn't do as much, so there
is less to test
- a lot of the tests were related to the 1-use check, which is now gone,
so there is less to test
- the `-buffer-hoisting -buffer-deallocation` is no longer mixed in, so
the checks related to that had to be rewritten
Differential Revision: https://reviews.llvm.org/D90657
When the "after" region of a WhileOp is merely forwarding its arguments back to
the "before" region, i.e. WhileOp is a canonical do-while loop, a simpler CFG
subgraph that omits the "after" region with its extra branch operation can be
produced. Loop rotation from general "while" to "if { do-while }" is left for a
future canonicalization pattern when it becomes necessary.
Differential Revision: https://reviews.llvm.org/D90604
The lowering is a straightforward inlining of the "before" and "after" regions
connected by (conditional) branches. This plugs the WhileOp into the
progressive lowering scheme. Future commits may choose to target WhileOp
instead of CFG when lowering ForOp.
Differential Revision: https://reviews.llvm.org/D90603
The new construct represents a generic loop with two regions: one executed
before the loop condition is verifier and another after that. This construct
can be used to express both a "while" loop and a "do-while" loop, depending on
where the main payload is located. It is intended as an intermediate
abstraction for lowering, which will be added later. This form is relatively
easy to target from higher-level abstractions and supports transformations such
as loop rotation and LICM.
Differential Revision: https://reviews.llvm.org/D90255
* All functions that return an Operation now return an OpView.
* All functions that accept an Operation now accept an _OperationBase, which both Operation and OpView extend and can resolve to the backing Operation.
* Moves user-facing instance methods from Operation -> _OperationBase so that both can have the same API.
* Concretely, this means that if there are custom op classes defined (i.e. in Python), any iteration or creation will return the appropriate instance (i.e. if you get/create an std.addf, you will get an instance of the mlir.dialects.std.AddFOp class, getting full access to any custom API it exposes).
* Refactors all __eq__ methods after realizing the proper way to do this for _OperationBase.
Differential Revision: https://reviews.llvm.org/D90584
This is useful in C source files where it is easy for a typo to be
silently assumed by the compiler to be an implicit declaration.
Differential Revision: https://reviews.llvm.org/D90727