This pulls shifts through a select+binop with a constant where the select conditionally executes the binop. We already do this for just the binop, but not with the select.
This can allow us to get the select closer to other selects to enable removing one.
Differential Revision: https://reviews.llvm.org/D39222
llvm-svn: 317510
Summary: When computing the SUM for indirect call promotion, if the callsite is already promoted in the profile, it will be promoted before ICP. In the current implementation, ICP only sees remaining counts in SUM. This may cause extra indirect call targets being promoted. This patch updates the SUM to include the counts already promoted earlier. This way we do not end up promoting too many indirect call targets.
Reviewers: tejohnson
Reviewed By: tejohnson
Subscribers: llvm-commits, sanjoy
Differential Revision: https://reviews.llvm.org/D38763
llvm-svn: 317502
As discussed on llvm-dev:
http://lists.llvm.org/pipermail/llvm-dev/2016-November/107104.html
and again more recently:
http://lists.llvm.org/pipermail/llvm-dev/2017-October/118118.html
...this is a step in cleaning up our fast-math-flags implementation in IR to better match
the capabilities of both clang's user-visible flags and the backend's flags for SDNode.
As proposed in the above threads, we're replacing the 'UnsafeAlgebra' bit (which had the
'umbrella' meaning that all flags are set) with a new bit that only applies to algebraic
reassociation - 'AllowReassoc'.
We're also adding a bit to allow approximations for library functions called 'ApproxFunc'
(this was initially proposed as 'libm' or similar).
...and we're out of bits. 7 bits ought to be enough for anyone, right? :) FWIW, I did
look at getting this out of SubclassOptionalData via SubclassData (spacious 16-bits),
but that's apparently already used for other purposes. Also, I don't think we can just
add a field to FPMathOperator because Operator is not intended to be instantiated.
We'll defer movement of FMF to another day.
We keep the 'fast' keyword. I thought about removing that, but seeing IR like this:
%f.fast = fadd reassoc nnan ninf nsz arcp contract afn float %op1, %op2
...made me think we want to keep the shortcut synonym.
Finally, this change is binary incompatible with existing IR as seen in the
compatibility tests. This statement:
"Newer releases can ignore features from older releases, but they cannot miscompile
them. For example, if nsw is ever replaced with something else, dropping it would be
a valid way to upgrade the IR."
( http://llvm.org/docs/DeveloperPolicy.html#ir-backwards-compatibility )
...provides the flexibility we want to make this change without requiring a new IR
version. Ie, we're not loosening the FP strictness of existing IR. At worst, we will
fail to optimize some previously 'fast' code because it's no longer recognized as
'fast'. This should get fixed as we audit/squash all of the uses of 'isFast()'.
Note: an inter-dependent clang commit to use the new API name should closely follow
commit.
Differential Revision: https://reviews.llvm.org/D39304
llvm-svn: 317488
Now that we have a way to mark GlobalValues as local we can use the symbol
resolutions that the linker plugin provides as part of lto/thinlto link
step to refine the compilers view on what symbols will end up being local.
Originally commited as r317374, but reverted in r317395 to update some missed
tests.
Differential Revision: https://reviews.llvm.org/D35702
llvm-svn: 317408
This preserves the debug info for the cast operation in the original location.
rdar://problem/33460652
Reapplied r317340 with the test moved into an ARM-specific directory.
llvm-svn: 317375
Now that we have a way to mark GlobalValues as local we can use the symbol
resolutions that the linker plugin provides as part of lto/thinlto link
step to refine the compilers view on what symbols will end up being local.
Differential Revision: https://reviews.llvm.org/D35702
llvm-svn: 317374
Merging conditional stores tries to check to see if the code is if convertible after the store is moved. But the store hasn't been moved yet so its being counted against the threshold.
The patch adds 1 to the threshold comparison to make sure we don't count the store. I've adjusted a test to use a lower threshold to ensure we still do that conversion with the lower threshold.
Differential Revision: https://reviews.llvm.org/D39570
llvm-svn: 317368
This recommit r317351 after fixing a buildbot failure.
Original commit message:
Summary:
This change add a pass which tries to split a call-site to pass
more constrained arguments if its argument is predicated in the control flow
so that we can expose better context to the later passes (e.g, inliner, jump
threading, or IPA-CP based function cloning, etc.).
As of now we support two cases :
1) If a call site is dominated by an OR condition and if any of its arguments
are predicated on this OR condition, try to split the condition with more
constrained arguments. For example, in the code below, we try to split the
call site since we can predicate the argument (ptr) based on the OR condition.
Split from :
if (!ptr || c)
callee(ptr);
to :
if (!ptr)
callee(null ptr) // set the known constant value
else if (c)
callee(nonnull ptr) // set non-null attribute in the argument
2) We can also split a call-site based on constant incoming values of a PHI
For example,
from :
BB0:
%c = icmp eq i32 %i1, %i2
br i1 %c, label %BB2, label %BB1
BB1:
br label %BB2
BB2:
%p = phi i32 [ 0, %BB0 ], [ 1, %BB1 ]
call void @bar(i32 %p)
to
BB0:
%c = icmp eq i32 %i1, %i2
br i1 %c, label %BB2-split0, label %BB1
BB1:
br label %BB2-split1
BB2-split0:
call void @bar(i32 0)
br label %BB2
BB2-split1:
call void @bar(i32 1)
br label %BB2
BB2:
%p = phi i32 [ 0, %BB2-split0 ], [ 1, %BB2-split1 ]
llvm-svn: 317362
Summary:
This change add a pass which tries to split a call-site to pass
more constrained arguments if its argument is predicated in the control flow
so that we can expose better context to the later passes (e.g, inliner, jump
threading, or IPA-CP based function cloning, etc.).
As of now we support two cases :
1) If a call site is dominated by an OR condition and if any of its arguments
are predicated on this OR condition, try to split the condition with more
constrained arguments. For example, in the code below, we try to split the
call site since we can predicate the argument (ptr) based on the OR condition.
Split from :
if (!ptr || c)
callee(ptr);
to :
if (!ptr)
callee(null ptr) // set the known constant value
else if (c)
callee(nonnull ptr) // set non-null attribute in the argument
2) We can also split a call-site based on constant incoming values of a PHI
For example,
from :
BB0:
%c = icmp eq i32 %i1, %i2
br i1 %c, label %BB2, label %BB1
BB1:
br label %BB2
BB2:
%p = phi i32 [ 0, %BB0 ], [ 1, %BB1 ]
call void @bar(i32 %p)
to
BB0:
%c = icmp eq i32 %i1, %i2
br i1 %c, label %BB2-split0, label %BB1
BB1:
br label %BB2-split1
BB2-split0:
call void @bar(i32 0)
br label %BB2
BB2-split1:
call void @bar(i32 1)
br label %BB2
BB2:
%p = phi i32 [ 0, %BB2-split0 ], [ 1, %BB2-split1 ]
Reviewers: davidxl, huntergr, chandlerc, mcrosier, eraman, davide
Reviewed By: davidxl
Subscribers: sdesmalen, ashutosh.nema, fhahn, mssimpso, aemerson, mgorny, mehdi_amini, kristof.beyls, llvm-commits
Differential Revision: https://reviews.llvm.org/D39137
llvm-svn: 317351
Summary:
The current LICM allows sinking an instruction only when it is exposed to exit
blocks through a trivially replacable PHI of which all incoming values are the
same instruction. This change enhance LICM to sink a sinkable instruction
through non-trivially replacable PHIs by spliting predecessors of loop
exits.
Reviewers: hfinkel, majnemer, davidxl, bmakam, mcrosier, danielcdh, efriedma, jtony
Reviewed By: efriedma
Subscribers: nemanjai, dberlin, llvm-commits
Differential Revision: https://reviews.llvm.org/D37163
llvm-svn: 317335
Summary:
Refactored the code to separate out common functions that are being
reused.
This is to reduce the changes for changes coming up wrt loop
predication with reverse loops.
This refactoring is what we have in our downstream code.
llvm-svn: 317324
Summary:
Also added a reserve() method to MapVector since we want to use that from
ADCE.
DenseMap does not provide deterministic iteration order so with that
we will handle the members of BlockInfo in random order, eventually
leading to random order of the blocks in the predecessor lists.
Without this change, I get the same predecessor order in about 90% of the
time when I compile a certain reproducer and in 10% I get a different one.
No idea how to make a proper test case for this.
Reviewers: kuhar, david2050
Reviewed By: kuhar
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D39593
llvm-svn: 317323
Summary:
InlineFunction can fail, for example when trying to inline vararg
fuctions. In those cases, we do not want to bump partial inlining
counters or set AnyInlined to true, because this could leave an unused
function hanging around.
Reviewers: davidxl, davide, gyiu
Reviewed By: davide
Subscribers: llvm-commits, eraman
Differential Revision: https://reviews.llvm.org/D39581
llvm-svn: 317314
Summary:
Currently the block frequency analysis is an approximation for irreducible
loops.
The new irreducible loop metadata is used to annotate the irreducible loop
headers with their header weights based on the PGO profile (currently this is
approximated to be evenly weighted) and to help improve the accuracy of the
block frequency analysis for irreducible loops.
This patch is a basic support for this.
Reviewers: davidxl
Reviewed By: davidxl
Subscribers: mehdi_amini, llvm-commits, eraman
Differential Revision: https://reviews.llvm.org/D39028
llvm-svn: 317278
Summary:
This patch allows us to predicate range checks that have a type narrower than
the latch check type. We leverage SCEV analysis to identify a truncate for the
latchLimit and latchStart.
There is also safety checks in place which requires the start and limit to be
known at compile time. We require this to make sure that the SCEV truncate expr
for the IV corresponding to the latch does not cause us to lose information
about the IV range.
Added tests show the loop predication over range checks that are of various
types and are narrower than the latch type.
This enhancement has been in our downstream tree for a while.
Reviewers: apilipenko, sanjoy, mkazantsev
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D39500
llvm-svn: 317269
The original change was reverted in rL317217 because of the failure in
the RS4GC testcase. I couldn't reproduce the failure on my local machine
(macbook) but could reproduce it on a linux box.
The failure was around removing the uses of invariant.start. The fix
here is to just RAUW undef (which was the first implementation in D39388).
This is perfectly valid IR as discussed in the review.
llvm-svn: 317225
Summary:
Invariant.start on memory locations has the property that the memory
location is unchanging. However, this is not true in the face of
rewriting statepoints for GC.
Teach RS4GC about removing invariant.start so that optimizations after
RS4GC does not incorrect sink a load from the memory location past a
statepoint.
Added test showcasing the issue.
Reviewers: reames, apilipenko, dneilson
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D39388
llvm-svn: 317215
undefined reference to `llvm::TargetPassConfig::ID' on
clang-ppc64le-linux-multistage
This reverts commit eea333c33fa73ad225ef28607795984829f65688.
llvm-svn: 317213
Summary:
This is mostly a noop (most of the test diffs are renamed blocks).
There are a few temporary register renames (eax<->ecx) and a few blocks are
shuffled around.
See the discussion in PR33325 for more details.
Reviewers: spatel
Subscribers: mgorny
Differential Revision: https://reviews.llvm.org/D39456
llvm-svn: 317211
Summary:
SpeculativelyExecuteBB can flatten the CFG by doing
speculative execution followed by a select instruction.
When the speculatively executed BB contained dbg intrinsics
the result could be a little bit weird, since those dbg
intrinsics were inserted before the select in the flattened
CFG. So when single stepping in the debugger, printing the
value of the variable referenced in the dbg intrinsic, it
could happen that it looked like the variable had values
that never actually were assigned to the variable.
This patch simply discards all dbg intrinsics that were found
in the speculatively executed BB.
Reviewers: aprantl, chandlerc, craig.topper
Reviewed By: aprantl
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D39494
llvm-svn: 317198
Summary: In the compile phase of SamplePGO+ThinLTO, ICP is not invoked. Instead, indirect call targets will be included as function metadata for ThinIndex to buidl the call graph. This should not only include functions defined in other modules, but also functions defined in the same module, otherwise ThinIndex may find the callee dead and eliminate it, while ICP in backend will revive the symbol, which leads to undefined symbol.
Reviewers: tejohnson
Reviewed By: tejohnson
Subscribers: sanjoy, llvm-commits, mehdi_amini
Differential Revision: https://reviews.llvm.org/D39480
llvm-svn: 317118
This is necessary because DCE is applied to full LTO modules. Without
this change, a reference from a dead ThinLTO global to a dead full
LTO global will result in an undefined reference at link time.
This problem is only observable when --gc-sections is disabled, or
when targeting COFF, as the COFF port of lld requires all symbols to
have a definition even if all references are dead (this is consistent
with link.exe).
This change also adds an EliminateAvailableExternally pass at -O0. This
is necessary to handle the situation on Windows where a non-prevailing
copy of a linkonce_odr function has an SEH filter function; any
such filters must be DCE'd because they will contain a call to the
llvm.localrecover intrinsic, passing as an argument the address of the
function that the filter belongs to, and llvm.localrecover requires
this function to be defined locally.
Fixes PR35142.
Differential Revision: https://reviews.llvm.org/D39484
llvm-svn: 317108
This patch reverts rL311205 that was initially a wrong fix. The real problem
was in intersection of signed and unsigned ranges (see rL316552), and the
patch being reverted masked the problem instead of fixing it.
By now, the test against which rL311205 was made works OK even without this
code. This revert patch also contains a test case that demonstrates incorrect
behavior caused by rL311205: it is caused by incorrect choise of signed max
instead of unsigned.
llvm-svn: 317088
Summary:
By replacing branches to CommonExitBlock, we remove the node from
CommonExitBlock's predecessors, invalidating the iterator. The problem
is exposed when the common exit block has multiple predecessors and
needs to sink lifetime info. The modification in the test case trigger
the issue.
Reviewers: davidxl, davide, wmi
Reviewed By: davidxl
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D39112
llvm-svn: 317084
This formulation might be slightly slower since I eagerly compute the cheap replacements. If anyone sees this having a compile time impact, let me know and I'll use lazy population instead.
llvm-svn: 317048
Currently the selects are created with the names of their inputs concatenated together. It's possible to get cases that chain these selects together resulting in long names due to multiple levels of concatenation. Our internal branch of llvm managed to generate names over 100000 characters in length on a particular test due to an extreme compounding of the names.
This patch changes the name to a generic name that is not dependent on its inputs.
Differential Revision: https://reviews.llvm.org/D39440
llvm-svn: 317024
If a select instruction tests the returned flag of a cmpxchg instruction and
selects between the returned value of the cmpxchg instruction and its compare
operand, the result of the select will always be equal to its false value.
Differential Revision: https://reviews.llvm.org/D39383
llvm-svn: 316994
The optimisation remarks for loop unrolling with an unrolled remainder looks something like:
test.c:7:18: remark: completely unrolled loop with 3 iterations [-Rpass=loop-unroll]
C[i] += A[i*N+j];
^
test.c:6:9: remark: unrolled loop by a factor of 4 with run-time trip count [-Rpass=loop-unroll]
for(int j = 0; j < N; j++)
^
This removes the first of the two messages.
Differential revision: https://reviews.llvm.org/D38725
llvm-svn: 316986
Rename `Offset`, `Scale`, `Length` into `Begin`, `Step`, `End` respectively
to make naming of similar entities for Ranges and Range Checks more
consistent.
Differential Revision: https://reviews.llvm.org/D39414
llvm-svn: 316979
As noted in the nice block comment, the previous code didn't actually handle multi-entry loops correctly, it just assumed SCEV didn't analyze such loops. Given SCEV has comments to the contrary, that seems a bit suspect. More importantly, the pass actually requires loopsimplify form which ensures a loop-preheader is available. Remove the excessive generaility and shorten the code greatly.
Note that we do successfully analyze many multi-entry loops, but we do so by converting them to single entry loops. See the added test case.
llvm-svn: 316976
This patch fixes the miscompile that happens when PRE hoists loads across guards and
other instructions that don't always pass control flow to their successors. PRE is now prohibited
to hoist across such instructions because there is no guarantee that the load standing after such
instruction is still valid before such instruction. For example, a load from under a guard may be
invalid before the guard in the following case:
int array[LEN];
...
guard(0 <= index && index < LEN);
use(array[index]);
Differential Revision: https://reviews.llvm.org/D37460
llvm-svn: 316975
Previously, the code returned early from the *function* when it couldn't find a free expansion, it should be returning from the *transform*. I don't have a test case, noticed this via inspection.
As a follow up, I'm going to revisit the logic in the extract function. I think that essentially the whole helper routine can be replaced with SCEVExpander, but I wanted to do that in a series of separate commits.
llvm-svn: 316974
Issue found by llvm-isel-fuzzer on OSS fuzz, https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=3725
If anyone actually cares about > 64 bit arithmetic, there's a lot more to do in this area. There's a bunch of obviously wrong code in the same function. I don't have the time to fix all of them and am just using this to understand what the workflow for fixing fuzzer cases might look like.
llvm-svn: 316967
InferAddressSpaces assumes the pointee type of addrspacecast
is the same as the operand, which is not always true and causes
invalid IR.
This bug cause build failure in HCC.
This patch fixes that.
Differential Revision: https://reviews.llvm.org/D39432
llvm-svn: 316957
It's not guaranteed. There's a bug open to sort them in predecessor
order, but it won't happen anytime soon. In the meanwhile, passes
will have to do an O(#preds) scan. Such is life.
llvm-svn: 316953
Summary:
For reference, see: http://lists.llvm.org/pipermail/llvm-dev/2017-August/116589.html
This patch fleshes out the instruction class hierarchy with respect to atomic and
non-atomic memory intrinsics. With this change, the relevant part of the class
hierarchy becomes:
IntrinsicInst
-> MemIntrinsicBase (methods-only class)
-> MemIntrinsic (non-atomic intrinsics)
-> MemSetInst
-> MemTransferInst
-> MemCpyInst
-> MemMoveInst
-> AtomicMemIntrinsic (atomic intrinsics)
-> AtomicMemSetInst
-> AtomicMemTransferInst
-> AtomicMemCpyInst
-> AtomicMemMoveInst
-> AnyMemIntrinsic (both atomicities)
-> AnyMemSetInst
-> AnyMemTransferInst
-> AnyMemCpyInst
-> AnyMemMoveInst
This involves some class renaming:
ElementUnorderedAtomicMemCpyInst -> AtomicMemCpyInst
ElementUnorderedAtomicMemMoveInst -> AtomicMemMoveInst
ElementUnorderedAtomicMemSetInst -> AtomicMemSetInst
A script for doing this renaming in downstream trees is included below.
An example of where the Any* classes should be used in LLVM is when reasoning
about the effects of an instruction (ex: aliasing).
---
Script for renaming AtomicMem* classes:
PREFIXES="[<,([:space:]]"
CLASSES="MemIntrinsic|MemTransferInst|MemSetInst|MemMoveInst|MemCpyInst"
SUFFIXES="[;)>,[:space:]]"
REGEX="(${PREFIXES})ElementUnorderedAtomic(${CLASSES})(${SUFFIXES})"
REGEX2="visitElementUnorderedAtomic(${CLASSES})"
FILES=$( grep -E "(${REGEX}|${REGEX2})" -r . | tr ':' ' ' | awk '{print $1}' | sort | uniq )
SED_SCRIPT="s~${REGEX}~\1Atomic\2\3~g"
SED_SCRIPT2="s~${REGEX2}~visitAtomic\1~g"
for f in $FILES; do
echo "Processing: $f"
sed -i ".bak" -E "${SED_SCRIPT};${SED_SCRIPT2};${EA_SED_SCRIPT};${EA_SED_SCRIPT2}" $f
done
Reviewers: sanjoy, deadalnix, apilipenko, anna, skatkov, mkazantsev
Reviewed By: sanjoy
Subscribers: hfinkel, jholewinski, arsenm, sdardis, nhaehnle, JDevlieghere, javed.absar, llvm-commits
Differential Revision: https://reviews.llvm.org/D38419
llvm-svn: 316950
- Targets that want to support memcmp expansions now return the list of
supported load sizes.
- Expansion codegen does not assume that all power-of-two load sizes
smaller than the max load size are valid. For examples, this is not the
case for x86(32bit)+sse2.
Fixes PR34887.
llvm-svn: 316905
This version of the patch includes a fix addressing a stage2 LTO buildbot
failure and addressed some additional nits.
Original commit message:
This updates the SCCP solver to use of the ValueElement lattice for
parameters, which provides integer range information. The range
information is used to remove unneeded icmp instructions.
For the following function, f() can be optimized to ret i32 2 with
this change
source_filename = "sccp.c"
target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128"
target triple = "x86_64-unknown-linux-gnu"
; Function Attrs: norecurse nounwind readnone uwtable
define i32 @main() local_unnamed_addr #0 {
entry:
%call = tail call fastcc i32 @f(i32 1)
%call1 = tail call fastcc i32 @f(i32 47)
%add3 = add nsw i32 %call, %call1
ret i32 %add3
}
; Function Attrs: noinline norecurse nounwind readnone uwtable
define internal fastcc i32 @f(i32 %x) unnamed_addr #1 {
entry:
%c1 = icmp sle i32 %x, 100
%cmp = icmp sgt i32 %x, 300
%. = select i1 %cmp, i32 1, i32 2
ret i32 %.
}
attributes #1 = { noinline }
Reviewers: davide, sanjoy, efriedma, dberlin
Reviewed By: davide, dberlin
Subscribers: mcrosier, gberry, mssimpso, dberlin, llvm-commits
Differential Revision: https://reviews.llvm.org/D36656
llvm-svn: 316891
This version of the patch includes a fix addressing a stage2 LTO buildbot
failure and addressed some additional nits.
Original commit message:
This updates the SCCP solver to use of the ValueElement lattice for
parameters, which provides integer range information. The range
information is used to remove unneeded icmp instructions.
For the following function, f() can be optimized to ret i32 2 with
this change
source_filename = "sccp.c"
target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128"
target triple = "x86_64-unknown-linux-gnu"
; Function Attrs: norecurse nounwind readnone uwtable
define i32 @main() local_unnamed_addr #0 {
entry:
%call = tail call fastcc i32 @f(i32 1)
%call1 = tail call fastcc i32 @f(i32 47)
%add3 = add nsw i32 %call, %call1
ret i32 %add3
}
; Function Attrs: noinline norecurse nounwind readnone uwtable
define internal fastcc i32 @f(i32 %x) unnamed_addr #1 {
entry:
%c1 = icmp sle i32 %x, 100
%cmp = icmp sgt i32 %x, 300
%. = select i1 %cmp, i32 1, i32 2
ret i32 %.
}
attributes #1 = { noinline }
Reviewers: davide, sanjoy, efriedma, dberlin
Reviewed By: davide, dberlin
Subscribers: mcrosier, gberry, mssimpso, dberlin, llvm-commits
Differential Revision: https://reviews.llvm.org/D36656
llvm-svn: 316887
This is no-functional-change-intended.
This is repackaging the functionality of D30333 (defer switch-to-lookup-tables) and
D35411 (defer folding unconditional branches) with pass parameters rather than a named
"latesimplifycfg" pass. Now that we have individual options to control the functionality,
we could decouple when these fire (but that's an independent patch if desired).
The next planned step would be to add another option bit to disable the sinking transform
mentioned in D38566. This should also make it clear that the new pass manager needs to
be updated to limit simplifycfg in the same way as the old pass manager.
Differential Revision: https://reviews.llvm.org/D38631
llvm-svn: 316835
Summary:
We shouldn't do this transformation if the function is marked nobuitlin.
We were only checking that the return type is floating point, we really should be checking the argument types and argument count as well. This can be accomplished by using the other version of getLibFunc that takes the Function and not just the name.
We should also be checking TLI::has since sqrtf is a macro on Windows.
Fixes PR32559.
Reviewers: hfinkel, spatel, davide, efriedma
Reviewed By: davide, efriedma
Subscribers: efriedma, llvm-commits, eraman
Differential Revision: https://reviews.llvm.org/D39381
llvm-svn: 316819
This is a follow up change for D37569.
Currently the transformation is limited to the case when:
* The loop has a single latch with the condition of the form: ++i <pred> latchLimit, where <pred> is u<, u<=, s<, or s<=.
* The step of the IV used in the latch condition is 1.
* The IV of the latch condition is the same as the post increment IV of the guard condition.
* The guard condition is of the form i u< guardLimit.
This patch enables the transform in the case when the latch is
latchStart + i <pred> latchLimit, where <pred> is u<, u<=, s<, or s<=.
And the guard is
guardStart + i u< guardLimit
Reviewed By: anna
Differential Revision: https://reviews.llvm.org/D39097
llvm-svn: 316768
Summary: There are certain requirements for debug location of debug intrinsics, e.g. the scope of the DILocalVariable should be the same as the scope of its debug location. As a result, we should not add discriminator encoding for debug intrinsics.
Reviewers: dblaikie, aprantl
Reviewed By: aprantl
Subscribers: JDevlieghere, aprantl, bjope, sanjoy, llvm-commits
Differential Revision: https://reviews.llvm.org/D39343
llvm-svn: 316703
When going to explain this to someone else, I got tripped up by the complicated meaning of IsKnownNonEscapingObject in load-store promotion. Extract a helper routine and clarify naming/scopes to make this a bit more obvious.
llvm-svn: 316699
Summary:
We no longer add vectors of pointers as candidates for
load/store vectorization. It does not seem to work anyway,
but without this patch we can end up in asserts when trying
to create casts between an integer type and the pointer of
vectors type.
The test case I've added used to assert like this when trying to
cast between i64 and <2 x i16*>:
opt: ../lib/IR/Instructions.cpp:2565: Assertion `castIsValid(op, S, Ty) && "Invalid cast!"' failed.
#0 PrintStackTraceSignalHandler(void*)
#1 SignalHandler(int)
#2 __restore_rt
#3 __GI_raise
#4 __GI_abort
#5 __GI___assert_fail
#6 llvm::CastInst::Create(llvm::Instruction::CastOps, llvm::Value*, llvm::Type*, llvm::Twine const&, llvm::Instruction*)
#7 llvm::IRBuilder<llvm::ConstantFolder, llvm::IRBuilderDefaultInserter>::CreateBitOrPointerCast(llvm::Value*, llvm::Type*, llvm::Twine const&)
#8 Vectorizer::vectorizeStoreChain(llvm::ArrayRef<llvm::Instruction*>, llvm::SmallPtrSet<llvm::Instruction*, 16u>*)
Reviewers: arsenm
Reviewed By: arsenm
Subscribers: nhaehnle, llvm-commits
Differential Revision: https://reviews.llvm.org/D39296
llvm-svn: 316665
Summary:
The code comments indicate that no effort has been spent on
handling load/stores when the size isn't a multiple of the
byte size correctly. However, the code only avoided types
smaller than 8 bits. So for example a load of an i28 could
still be considered as a candidate for vectorization.
This patch adjusts the code to behave according to the code
comment.
The test case used to hit the following assert when
trying to use "cast" an i32 to i28 using CreateBitOrPointerCast:
opt: ../lib/IR/Instructions.cpp:2565: Assertion `castIsValid(op, S, Ty) && "Invalid cast!"' failed.
#0 PrintStackTraceSignalHandler(void*)
#1 SignalHandler(int)
#2 __restore_rt
#3 __GI_raise
#4 __GI_abort
#5 __GI___assert_fail
#6 llvm::CastInst::Create(llvm::Instruction::CastOps, llvm::Value*, llvm::Type*, llvm::Twine const&, llvm::Instruction*)
#7 llvm::IRBuilder<llvm::ConstantFolder, llvm::IRBuilderDefaultInserter>::CreateBitOrPointerCast(llvm::Value*, llvm::Type*, llvm::Twine const&)
#8 (anonymous namespace)::Vectorizer::vectorizeLoadChain(llvm::ArrayRef<llvm::Instruction*>, llvm::SmallPtrSet<llvm::Instruction*, 16u>*)
Reviewers: arsenm
Reviewed By: arsenm
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D39295
llvm-svn: 316663
Summary: For some irreducible CFG the domtree nodes might be dead, do not update domtree for dead nodes.
Reviewers: kuhar, dberlin, hfinkel
Reviewed By: kuhar
Subscribers: llvm-commits, mcrosier
Differential Revision: https://reviews.llvm.org/D38960
llvm-svn: 316582
This patch adds a new pass for attaching !callees metadata to indirect call
sites. The pass propagates values to call sites by performing an IPSCCP-like
analysis using the generic sparse propagation solver. For indirect call sites
having a small set of possible callees, the attached metadata indicates what
those callees are. The metadata can be used to facilitate optimizations like
intersecting the function attributes of the possible callees, refining the call
graph, performing indirect call promotion, etc.
Differential Revision: https://reviews.llvm.org/D37355
llvm-svn: 316576
IRCE for unsigned latch conditions was temporarily disabled by rL314881. The motivating
example contained an unsigned latch condition and a signed range check. One of the safe
iteration ranges was `[1, SINT_MAX + 1]`. Its right border was incorrectly interpreted as a negative
value in `IntersectRange` function, this lead to a miscompile under which we deleted a range check
without inserting a postloop where it was needed.
This patch brings back IRCE for unsigned latch conditions. Now we treat range intersection more
carefully. If the latch condition was unsigned, we only try to consider a range check for deletion if:
1. The range check is also unsigned, or
2. Safe iteration range of the range check lies within `[0, SINT_MAX]`.
The same is done for signed latch.
Values from `[0, SINT_MAX]` are unambiguous, these values are non-negative under any interpretation,
and all values of a range intersected with such range are also non-negative.
We also use signed/unsigned min/max functions for range intersection depending on type of the
latch condition.
Differential Revision: https://reviews.llvm.org/D38581
llvm-svn: 316552
For a SCEV range, this patch replaces the naive emptiness check for SCEV ranges
which looks like `Begin == End` with a SCEV check. The range is guaranteed to be
empty of `Begin >= End`. We should filter such ranges out and do not try to perform
IRCE for them.
For example, we can get such range when intersecting range `[A, B)` and `[C, D)`
where `A < B < C < D`. The resulting range is `[max(A, C), min(B, D)) = [C, B)`.
This range is empty, but its `Begin` does not match with `End`.
Making IRCE for an empty range is basically safe but unprofitable because we
never actually get into the main loop where the range checks are supposed to
be eliminated. This patch uses SCEV mechanisms to treat loops with proved
`Begin >= End` as empty.
Differential Revision: https://reviews.llvm.org/D39082
llvm-svn: 316550
If particular target supports volatile memory access operations, we can
avoid AS casting to generic AS. Currently it's only enabled in NVPTX for
loads and stores that access global & shared AS.
Differential Revision: https://reviews.llvm.org/D39026
llvm-svn: 316495
Summary:
Kill the thread if operand 0 == false.
llvm.amdgcn.wqm.vote can be applied to the operand.
Also allow kill in all shader stages.
Reviewers: arsenm, nhaehnle
Subscribers: kzhuravl, wdng, yaxunl, dstuttard, tpr, t-tye, llvm-commits
Differential Revision: https://reviews.llvm.org/D38544
llvm-svn: 316427
The `BasicBlock::getFirstInsertionPt` call may return `std::end` for the
BB. Dereferencing the end iterator results in an assertion failure
"(!NodePtr->isKnownSentinel()), function operator*". Ensure that the
returned iterator is valid before dereferencing it. If the end is
returned, move one position backward to get a valid insertion point.
llvm-svn: 316401
Summary:
The elts of ActivePreds which is defined as a SmallPtrSet are copied
into Blocks using std::copy. This makes the resultant order of Blocks
non-deterministic. We cannot simply sort Blocks as they need to match
the corresponding Values. So a better approach is to define ActivePreds
as SmallSetVector.
This fixes the following failures in
http://lab.llvm.org:8011/builders/reverse-iteration:
LLVM :: Transforms/GVNSink/indirect-call.ll
LLVM :: Transforms/GVNSink/sink-common-code.ll
LLVM :: Transforms/GVNSink/struct.ll
Reviewers: dberlin, jmolloy, bkramer, efriedma
Reviewed By: dberlin
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D39025
llvm-svn: 316369
As discussed in D39011:
https://reviews.llvm.org/D39011
...replacing constants with a variable is inverting the transform done
by other IR passes, so we definitely don't want to do this early.
In fact, it's questionable whether this transform belongs in SimplifyCFG
at all. I'll look at moving this to codegen as a follow-up step.
llvm-svn: 316298
The missed canonicalization/optimization in the motivating test from PR34471 leads to very different codegen:
int switcher(int x) {
switch(x) {
case 17: return 17;
case 19: return 19;
case 42: return 42;
default: break;
}
return 0;
}
int comparator(int x) {
if (x == 17) return 17;
if (x == 19) return 19;
if (x == 42) return 42;
return 0;
}
For the first example, we use a bit-test optimization to avoid a series of compare-and-branch:
https://godbolt.org/g/BivDsw
Differential Revision: https://reviews.llvm.org/D39011
llvm-svn: 316293
The way that splitInnerLoopHeader splits blocks requires that
the induction PHI will be the first PHI in the inner loop
header. This makes sure that is actually the case when there
are both IV and reduction phis.
Differential Revision: https://reviews.llvm.org/D38682
llvm-svn: 316261
MergeFunctions uses (through FunctionComparator) a map of GlobalValues
to identifiers because it needs to compare functions and globals
do not have an inherent total order. Thus, FunctionComparator
(through GlobalNumberState) has a ValueMap<GlobalValue *>.
r315852 added a RAUW on globals that may have been previously
encountered by the FunctionComparator, which would replace
a GlobalValue * key with a ConstantExpr *, which is illegal.
This commit adjusts that code path to remove the function being
replaced from the ValueMap as well.
llvm-svn: 316145
Summary:
If a compare instruction is same or inverse of the compare in the
branch of the loop latch, then return a constant evolution node.
Currently scope of evaluation is limited to SCEV computation for
PHI nodes.
This shall facilitate computations of loop exit counts in cases
where compare appears in the evolution chain of induction variables.
Will fix PR 34538
Reviewers: sanjoy, hfinkel, junryoungju
Reviewed By: junryoungju
Subscribers: javed.absar, llvm-commits
Differential Revision: https://reviews.llvm.org/D38494
llvm-svn: 316054
Summary:
std::unordered_multimap happens to be very slow when the number of elements
grows large. On one of our internal applications we observed a 17x compile time
improvement from changing it to DenseMap.
Reviewers: mehdi_amini, serge-sans-paille, davide
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D38916
llvm-svn: 316045
This patch reverts rL315440 because of the bug described at
https://bugs.llvm.org/show_bug.cgi?id=34937
The fix for the bug is on review as D38944, but not yet ready. Given this is a regression reverting until a fix is ready is called for.
Max would have done the revert himself, but is having trouble doing a build of fresh LLVM for some reason. I did the build and test to ensure the revert worked as expected on his behalf.
llvm-svn: 315974
above PHI instructions.
ARC optimizer has an optimization that moves a call to an ObjC runtime
function above a phi instruction when the phi has a null operand and is
an argument passed to the function call. This optimization should not
kick in when the runtime function is an objc_release that releases an
object with precise lifetime semantics.
rdar://problem/34959669
llvm-svn: 315914
Summary:
The following transformation for cmp instruction:
icmp smin(x, PositiveValue), 0 -> icmp x, 0
should only be done after checking for min/max to prevent infinite
looping caused by a reverse canonicalization. That is why this
transformation was moved to place after the mentioned check.
Reviewers: spatel, efriedma
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D38934
Patch by: Artur Gainullin <artur.gainullin@intel.com>
llvm-svn: 315895
This can result in significant code size savings in some cases,
e.g. an interrupt table all filled with the same assembly stub
in a certain Cortex-M BSP results in code blowup by a factor of 2.5.
Differential Revision: https://reviews.llvm.org/D34806
llvm-svn: 315853
This reduces code size for constructs like vtables or interrupt
tables that refer to functions in global initializers.
Differential Revision: https://reviews.llvm.org/D34805
llvm-svn: 315852
This avoid code duplication and allow us to add the disable unroll metadata elsewhere.
Differential Revision: https://reviews.llvm.org/D38928
llvm-svn: 315850
It is possible for both a base and a derived class to be satisfied
with a unique vtable. If a program contains casts of the same pointer
to both of those types, the CFI checks will be lowered to this
(with ThinLTO):
if (p != &__typeid_base_global_addr)
trap();
if (p != &__typeid_derived_global_addr)
trap();
The optimizer may then use the first condition combined
with the assumption that __typeid_base_global_addr and
__typeid_derived_global_addr may not alias to optimize away the second
comparison, resulting in an unconditional trap.
This patch fixes the bug by giving imported globals the type [0 x i8]*,
which prevents the optimizer from assuming that they do not alias.
Differential Revision: https://reviews.llvm.org/D38873
llvm-svn: 315753
This patch moves some common utility functions out of IPSCCP and makes them
available globally. The functions determine if interprocedural data-flow
analyses can propagate information through function returns, arguments, and
global variables.
Differential Revision: https://reviews.llvm.org/D37638
llvm-svn: 315719
Summary:
In RS4GC it is possible that a base pointer is contained in a vector that
has undergone a bitcast from one element-pointertype to another. We teach
RS4GC how to look through bitcasts of vector types when looking for a base
pointer.
Reviewers: anna
Reviewed By: anna
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D38849
llvm-svn: 315694
Significantly reduces performancei (~30%) of gipfeli
(https://github.com/google/gipfeli)
I have not yet managed to reproduce this regression with the open-source
version of the benchmark on github, but will work with others to get a
reproducer to you later today.
llvm-svn: 315680
Summary:
This patch adds processing of binary operations when the def of operands are in
the same block (i.e. local processing).
Earlier we bailed out in such cases (the bail out was introduced in rL252032)
because LVI at that time was more precise about context at the end of basic
blocks, which implied local def and use analysis didn't benefit CVP.
Since then we've added support for LVI in presence of assumes and guards. The
test cases added show how local def processing in CVP helps adding more
information to the ashr, sdiv, srem and add operators.
Note: processCmp which suffers from the same problem will
be handled in a later patch.
Reviewers: philip, apilipenko, SjoerdMeijer, hfinkel
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D38766
llvm-svn: 315634
This is a follow up for the loop predication change 313981 to support ule, sle latch predicates.
Reviewed By: mkazantsev
Differential Revision: https://reviews.llvm.org/D38177
llvm-svn: 315616
Summary:
Add LLVM_FORCE_ENABLE_DUMP cmake option, and use it along with
LLVM_ENABLE_ASSERTIONS to set LLVM_ENABLE_DUMP.
Remove NDEBUG and only use LLVM_ENABLE_DUMP to enable dump methods.
Move definition of LLVM_ENABLE_DUMP from config.h to llvm-config.h so
it'll be picked up by public headers.
Differential Revision: https://reviews.llvm.org/D38406
llvm-svn: 315590
This reverts commit 4e4ee1c507e2707bb3c208e1e1b6551c3015cbf5.
This is failing due to some code that isn't built on MSVC
so I didn't catch. Not immediately obvious how to fix this
at first glance, so I'm reverting for now.
llvm-svn: 315536
There's a lot of misuse of Twine scattered around LLVM. This
ranges in severity from benign (returning a Twine from a function
by value that is just a string literal) to pretty sketchy (storing
a Twine by value in a class). While there are some uses for
copying Twines, most of the very compelling ones are confined
to the Twine class implementation itself, and other uses are
either dubious or easily worked around.
This patch makes Twine's copy constructor private, and fixes up
all callsites.
Differential Revision: https://reviews.llvm.org/D38767
llvm-svn: 315530
parameterized emit() calls
Summary: This is not functional change to adopt new emit() API added in r313691.
Reviewed By: anemet
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D38285
llvm-svn: 315476
This patch fixes the miscompile that happens when PRE hoists loads across guards and
other instructions that don't always pass control flow to their successors. PRE is now prohibited
to hoist across such instructions because there is no guarantee that the load standing after such
instruction is still valid before such instruction. For example, a load from under a guard may be
invalid before the guard in the following case:
int array[LEN];
...
guard(0 <= index && index < LEN);
use(array[index]);
Differential Revision: https://reviews.llvm.org/D37460
llvm-svn: 315440
Sinking of unordered atomic load into loop must be disallowed because it turns
a single load into multiple loads. The relevant section of the documentation
is: http://llvm.org/docs/Atomics.html#unordered, specifically the Notes for
Optimizers section. Here is the full text of this section:
> Notes for optimizers
> In terms of the optimizer, this **prohibits any transformation that
> transforms a single load into multiple loads**, transforms a store into
> multiple stores, narrows a store, or stores a value which would not be
> stored otherwise. Some examples of unsafe optimizations are narrowing
> an assignment into a bitfield, rematerializing a load, and turning loads
> and stores into a memcpy call. Reordering unordered operations is safe,
> though, and optimizers should take advantage of that because unordered
> operations are common in languages that need them.
Patch by Daniil Suchkov!
Reviewed By: reames
Differential Revision: https://reviews.llvm.org/D38392
llvm-svn: 315438
IRCE should not apply when the safe iteration range is proved to be empty.
In this case we do unneeded job creating pre/post loops and then never
go to the main loop.
This patch makes IRCE not apply to empty safe ranges, adds test for this
situation and also modifies one of existing tests where it used to happen
slightly.
Reviewed By: anna
Differential Revision: https://reviews.llvm.org/D38577
llvm-svn: 315437
Summary: In the current implementation, we only have accurate profile count for standalone symbols. For inlined functions, we do not have entry count data because it's not available in LBR. In this patch, we use the first instruction's frequency to estimiate the function's entry count, especially for inlined functions. This may be inaccurate due to debug info in optimized code. However, this is a better estimate than the static 80/20 estimation we have in the current implementation.
Reviewers: tejohnson, davidxl
Reviewed By: tejohnson
Subscribers: sanjoy, llvm-commits, aprantl
Differential Revision: https://reviews.llvm.org/D38478
llvm-svn: 315369
Eliminate inttype phi with inttoptr/ptrtoint.
This version fixed a bug in finding the matching
phi -- the order of the incoming blocks may be
different (triggered in self build on Windows).
A new test case is added.
llvm-svn: 315272
There's at least one bug here - this code can fail with vector types (PR34856).
It's also being called for FREM; I'm still trying to understand how that is valid.
llvm-svn: 315127
This appears to be miscompiling Clang, as shown on two Windows bootstrap
bots:
http://lab.llvm.org:8011/builders/clang-x86-windows-msvc2015/builds/7611http://lab.llvm.org:8011/builders/clang-x64-ninja-win7/builds/6870
Nothing else is in the blame list. Both emit errors on this valid code
in the Windows ucrt headers:
C:\...\ucrt\malloc.h:95:32: error: invalid operands to binary expression ('char *' and 'int')
_Ptr = (char*)_Ptr + _ALLOCA_S_MARKER_SIZE;
~~~~~~~~~~~ ^ ~~~~~~~~~~~~~~~~~~~~~
I am attempting to reproduce this now.
This reverts r315044
llvm-svn: 315108
Summary: stripPointerCast is not reliably returning the value that's being type-casted. Instead it may look further at function attributes to further propagate the value. Instead of relying on stripPOintercast, the more reliable solution is to directly use the pointer to the promoted direct call.
Reviewers: tejohnson, davidxl
Reviewed By: tejohnson
Subscribers: llvm-commits, sanjoy
Differential Revision: https://reviews.llvm.org/D38603
llvm-svn: 315077
This is a vestige from the GCC-3 days, which disables IPO passes
when set. I don't think anybody actually uses it as there are
several IPO passes which still run with this flag set and
nobody complained/noticed. This reduces the delta between
current and new pass manager and allows us to easily review
the difference when we decide to flip the switch (or audit
which passes should run, FWIW).
llvm-svn: 315043
Summary:
If the extracted region has multiple exported data flows toward the same BB which is not included in the region, correct resotre instructions and PHI nodes won't be generated inside the exitStub. The solution is simply put the restore instructions right after the definition of output values instead of putting in exitStub.
Unittest for this bug is included.
Author: myhsu
Reviewers: chandlerc, davide, lattner, silvas, davidxl, wmi, kuhar
Subscribers: dberlin, kuhar, mgorny, llvm-commits
Differential Revision: https://reviews.llvm.org/D37902
llvm-svn: 315041
It is possible for two modules to define the same set of external
symbols without causing a duplicate symbol error at link time,
as long as each of the symbols is a comdat member. So we cannot
use them as part of a unique id for the module.
Differential Revision: https://reviews.llvm.org/D38602
llvm-svn: 315026
Summary: In SamplePGO, when an indirect call is promoted in the profiled binary, before profile annotation, it will be promoted and inlined. For the original indirect call, the current implementation will not mark VP profile on it. This is an issue when profile becomes stale. This patch annotates VP prof on indirect calls during annotation.
Reviewers: tejohnson
Reviewed By: tejohnson
Subscribers: sanjoy, llvm-commits
Differential Revision: https://reviews.llvm.org/D38477
llvm-svn: 315016
The inliner performs some kind of dead code elimination as it goes,
but there are cases that are not really caught by it. We might
at some point consider teaching the inliner about them, but it
is OK for now to run GlobalOpt + GlobalDCE in tandem as their
benefits generally outweight the cost, making the whole pipeline
faster.
This fixes PR34652.
Differential Revision: https://reviews.llvm.org/D38154
llvm-svn: 314997
When ignoring a load that participates in an interleaved group, make sure to
move a cast that needs to sink after it.
Testcase derived from reproducer of PR34743.
Differential Revision: https://reviews.llvm.org/D38338
llvm-svn: 314986
Instead of trying to keep LastWidenRecipe updated after creating each recipe,
have tryToWiden() retrieve the last recipe of the current VPBasicBlock and check
if it's a VPWidenRecipe when attempting to extend its range. This ensures that
such extensions, optimized to maintain the original instruction order, do so
only when the instructions are to maintain their relative order. The latter does
not always hold, e.g., when a cast needs to sink to unravel first order
recurrence (r306884).
Testcase derived from reproducer of PR34711.
Differential Revision: https://reviews.llvm.org/D38339
llvm-svn: 314981
We were using an i1 type and then zero extending to a vector. Instead just create the 0/1 directly as a ConstantInt with the correct type. No need to ask ConstantExpr to zero extend for us.
This bug is a bit tricky to hit because it requires us to visit a zext of an icmp that would normally be simplified to true/false, but that icmp hasnt' been visited yet. In the test case this zext and icmp were created by visiting a udiv and due to worklist ordering we got to the zext first.
Fixes PR34841.
llvm-svn: 314971
Summary: This is to avoid e.g. merging two cheap icmps if the target is not going to expand to something nice later.
Reviewers: dberlin, spatel
Subscribers: davide, nemanjai
Differential Revision: https://reviews.llvm.org/D38232
llvm-svn: 314970
We can support ashr similar to lshr, if we know that none of the shifted in bits are used. In that case SimplifyDemandedBits would normally convert it to lshr. But that conversion doesn't happen if the shift has additional users.
Differential Revision: https://reviews.llvm.org/D38521
llvm-svn: 314945
This is a follow-up to https://reviews.llvm.org/D38138.
I fixed the capitalization of some functions because we're changing those
lines anyway and that helped verify that we weren't accidentally dropping
any options by using default param values.
llvm-svn: 314930
Recommitting r314517 with the fix for handling ConstantExpr.
Original commit message:
Currently, getGEPCost() returns TCC_FREE whenever a GEP is a legal addressing
mode in the target. However, since it doesn't check its actual users, it will
return FREE even in cases where the GEP cannot be folded away as a part of
actual addressing mode. For example, if an user of the GEP is a call
instruction taking the GEP as a parameter, then the GEP may not be folded in
isel.
llvm-svn: 314923
We have found some corner cases connected to range intersection where IRCE makes
a bad thing when the latch condition is unsigned. The fix for that will go as a follow up.
This patch temporarily disables IRCE for unsigned latch conditions until the issue is fixed.
The unsigned latch conditions were introduced to IRCE by rL310027.
Differential Revision: https://reviews.llvm.org/D38529
llvm-svn: 314881
All the buildbots are red, e.g.
http://lab.llvm.org:8011/builders/clang-cmake-aarch64-lld/builds/2436/
> Summary:
> This patch tries to vectorize loads of consecutive memory accesses, accessed
> in non-consecutive or jumbled way. An earlier attempt was made with patch D26905
> which was reverted back due to some basic issue with representing the 'use mask' of
> jumbled accesses.
>
> This patch fixes the mask representation by recording the 'use mask' in the usertree entry.
>
> Change-Id: I9fe7f5045f065d84c126fa307ef6ebe0787296df
>
> Reviewers: mkuper, loladiro, Ayal, zvi, danielcdh
>
> Reviewed By: Ayal
>
> Subscribers: hans, mzolotukhin
>
> Differential Revision: https://reviews.llvm.org/D36130
llvm-svn: 314824
Summary:
This patch tries to vectorize loads of consecutive memory accesses, accessed
in non-consecutive or jumbled way. An earlier attempt was made with patch D26905
which was reverted back due to some basic issue with representing the 'use mask' of
jumbled accesses.
This patch fixes the mask representation by recording the 'use mask' in the usertree entry.
Change-Id: I9fe7f5045f065d84c126fa307ef6ebe0787296df
Reviewers: mkuper, loladiro, Ayal, zvi, danielcdh
Reviewed By: Ayal
Subscribers: hans, mzolotukhin
Differential Revision: https://reviews.llvm.org/D36130
llvm-svn: 314806
Apparently this works by virtue of the fact that the pointers are pointers to the APInts stored inside of the ConstantInt objects. But I really don't think we should be relying on that.
llvm-svn: 314761
Summary: If the merged instruction is call instruction, we need to set the scope to the closes common scope between 2 locations, otherwise it will cause trouble when the call is getting inlined.
Reviewers: dblaikie, aprantl
Reviewed By: dblaikie, aprantl
Subscribers: llvm-commits, sanjoy
Differential Revision: https://reviews.llvm.org/D37877
llvm-svn: 314694
Summary: This currently uses ConstantExpr to do its math, but as noted in a TODO it can all be done directly on APInt.
Reviewers: spatel, majnemer
Reviewed By: majnemer
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D38440
llvm-svn: 314640
And follow-up r314585.
Leads to segfaults. I'll forward reproduction instructions to the patch
author.
Also, for a recommit, still add the original patch description.
Otherwise, it becomes really tedious to find out what a patch actually
does. The fact that it is a recommit with a fix is somewhat secondary.
llvm-svn: 314622
Summary: In SamplePGO ThinLTO compile phase, we will not invoke ICP as it may introduce confusion to the 2nd annotation. This patch extracted that logic and makes it clearer before profile annotation. In the mean time, we need to make function importing process both inlined callsites as well as not promoted indirect callsites.
Reviewers: tejohnson
Reviewed By: tejohnson
Subscribers: sanjoy, mehdi_amini, llvm-commits, inglorion
Differential Revision: https://reviews.llvm.org/D38094
llvm-svn: 314619
This patch will eliminate redundant intptr/ptrtoint that pessimizes
analyses such as SCEV, AA and will make optimization passes such
as auto-vectorization more powerful.
Differential revision: http://reviews.llvm.org/D37832
llvm-svn: 314561
When type shrinking reductions, we should insert the truncations and extends at
the end of the loop latch block. Previously, these instructions were inserted
at the end of the loop header block. The difference is only a problem for loops
with predicated instructions (e.g., conditional stores and instructions that
may divide by zero). For these instructions, we create new basic blocks inside
the vectorized loop, which cause the loop header and latch to no longer be the
same block. This should fix PR34687.
Reference: https://bugs.llvm.org/show_bug.cgi?id=34687
llvm-svn: 314542
The type of a SCEVConstant may not match the corresponding LLVM Value.
In this case, we skip the constant folding for now.
TODO: Replace ConstantInt Zero by ConstantPointerNull
llvm-svn: 314531
Summary:
Currently, getGEPCost() returns TCC_FREE whenever a GEP is a legal addressing mode in the target.
However, since it doesn't check its actual users, it will return FREE even in cases
where the GEP cannot be folded away as a part of actual addressing mode.
For example, if an user of the GEP is a call instruction taking the GEP as a parameter,
then the GEP may not be folded in isel.
Reviewers: hfinkel, efriedma, mcrosier, jingyue, haicheng
Reviewed By: hfinkel
Subscribers: javed.absar, llvm-commits
Differential Revision: https://reviews.llvm.org/D38085
llvm-svn: 314517
JumpThreading now preserves dominance and lazy value information across the
entire pass. The pass manager is also informed of this preservation with
the goal of DT and LVI being recalculated fewer times overall during
compilation.
This change prepares JumpThreading for enhanced opportunities; particularly
those across loop boundaries.
Patch by: Brian Rzycki <b.rzycki@samsung.com>,
Sebastian Pop <s.pop@samsung.com>
Differential revision: https://reviews.llvm.org/D37528
llvm-svn: 314435
Summary:
And now that we no longer have to explicitly free() the Loop instances, we can
(with more ease) use the destructor of LoopBase to do what LoopBase::clear() was
doing.
Reviewers: chandlerc
Subscribers: mehdi_amini, mcrosier, llvm-commits
Differential Revision: https://reviews.llvm.org/D38201
llvm-svn: 314375
This reverts r314017 and similar code added in later commits. It seems to not work for pointer compares and is causing a bot failure for the last several days.
llvm-svn: 314360
reductions.
If both operands of the newly created SelectInst are Undefs the
resulting operation is also Undef, not SelectInst. It may cause crashes
when trying to propagate IR flags because function expects exactly
SelectInst instruction, nothing else.
llvm-svn: 314323
These changes faciliate positive behavior for arithmetic based select
expressions that match its translation criteria, keeping code size gated to
neutral or improved scenarios.
Patch by Michael Berg <michael_c_berg@apple.com>!
Differential Revision: https://reviews.llvm.org/D38263
llvm-svn: 314320
This was intended to be no-functional-change, but it's not - there's a test diff.
So I thought I should stop here and post it as-is to see if this looks like what was expected
based on the discussion in PR34603:
https://bugs.llvm.org/show_bug.cgi?id=34603
Notes:
1. The test improvement occurs because the existing 'LateSimplifyCFG' marker is not carried
through the recursive calls to 'SimplifyCFG()->SimplifyCFGOpt().run()->SimplifyCFG()'.
The parameter isn't passed down, so we pick up the default value from the function signature
after the first level. I assumed that was a bug, so I've passed 'Options' down in all of the
'SimplifyCFG' calls.
2. I split 'LateSimplifyCFG' into 2 bits: ConvertSwitchToLookupTable and KeepCanonicalLoops.
This would theoretically allow us to differentiate the transforms controlled by those params
independently.
3. We could stash the optional AssumptionCache pointer and 'LoopHeaders' pointer in the struct too.
I just stopped here to minimize the diffs.
4. Similarly, I stopped short of messing with the pass manager layer. I have another question that
could wait for the follow-up: why is the new pass manager creating the pass with LateSimplifyCFG
set to true no matter where in the pipeline it's creating SimplifyCFG passes?
// Create an early function pass manager to cleanup the output of the
// frontend.
EarlyFPM.addPass(SimplifyCFGPass());
-->
/// \brief Construct a pass with the default thresholds
/// and switch optimizations.
SimplifyCFGPass::SimplifyCFGPass()
: BonusInstThreshold(UserBonusInstThreshold),
LateSimplifyCFG(true) {} <-- switches get converted to lookup tables and loops may not be in canonical form
If this is unintended, then it's possible that the current behavior of dropping the 'LateSimplifyCFG'
setting via recursion was masking this bug.
Differential Revision: https://reviews.llvm.org/D38138
llvm-svn: 314308
This patch tries to transform cases like:
for (unsigned i = 0; i < N; i += 2) {
bool c0 = (i & 0x1) == 0;
bool c1 = ((i + 1) & 0x1) == 1;
}
To
for (unsigned i = 0; i < N; i += 2) {
bool c0 = true;
bool c1 = true;
}
This commit also update test/Transforms/IndVarSimplify/replace-srem-by-urem.ll to prevent constant folding.
Differential Revision: https://reviews.llvm.org/D38272
llvm-svn: 314266
Summary:
Don't bail out on constant divisors for divisions that can be narrowed without
introducing control flow . This gives us a 32 bit multiply instead of an
emulated 64 bit multiply in the generated PTX assembly.
Reviewers: jlebar
Subscribers: jholewinski, mcrosier, llvm-commits
Differential Revision: https://reviews.llvm.org/D38265
llvm-svn: 314253
If this transformation succeeds, we're going to remove our dependency on the shift by rewriting the and. So it doesn't matter how many uses the shift has.
This distributes the one use check to other transforms in foldICmpAndConstConst that do need it.
Differential Revision: https://reviews.llvm.org/D38206
llvm-svn: 314233
This is a 2nd attempt at:
https://reviews.llvm.org/rL310055
...which was reverted at rL310123 because of PR34074:
https://bugs.llvm.org/show_bug.cgi?id=34074
In this version, we break out of the inner loop after we successfully merge and kill a pair of stores. In the
earlier rev, we were continuing instead, which meant we could process the invalid info from a now dead store.
Original commit message (authored by Filipe Cabecinhas):
This fixes PR31777.
If both stores' values are ConstantInt, we merge the two stores
(shifting the smaller store appropriately) and replace the earlier (and
larger) store with an updated constant.
In the future we should also support vectors of integers. And maybe
float/double if we can.
Differential Revision: https://reviews.llvm.org/D30703
llvm-svn: 314206
Usually the frontend communicates the size of wchar_t via metadata and
we can optimize wcslen (and possibly other calls in the future). In
cases without the wchar_size metadata we would previously try to guess
the correct size based on the target triple; however this is fragile to
keep up to date and may miss users manually changing the size via flags.
Better be safe and stop guessing and optimizing if the frontend didn't
communicate the size.
Differential Revision: https://reviews.llvm.org/D38106
llvm-svn: 314185
Summary:
Sanitizer blacklist entries currently apply to all sanitizers--there
is no way to specify that an entry should only apply to a specific
sanitizer. This is important for Control Flow Integrity since there are
several different CFI modes that can be enabled at once. For maximum
security, CFI blacklist entries should be scoped to only the specific
CFI mode(s) that entry applies to.
Adding section headers to SpecialCaseLists allows users to specify more
information about list entries, like sanitizer names or other metadata,
like so:
[section1]
fun:*fun1*
[section2|section3]
fun:*fun23*
The section headers are regular expressions. For backwards compatbility,
blacklist entries entered before a section header are put into the '[*]'
section so that blacklists without sections retain the same behavior.
SpecialCaseList has been modified to also accept a section name when
matching against the blacklist. It has also been modified so the
follow-up change to clang can define a derived class that allows
matching sections by SectionMask instead of by string.
Reviewers: pcc, kcc, eugenis, vsk
Reviewed By: eugenis, vsk
Subscribers: vitalybuka, llvm-commits
Differential Revision: https://reviews.llvm.org/D37924
llvm-svn: 314170
All this optimization cares about is knowing how many low bits of LHS is known to be zero and whether that means that the result is 0 or greater than the RHS constant. It doesn't matter where the zeros in the low bits came from. So we don't need to specifically look for an AND. Instead we can use known bits.
Differential Revision: https://reviews.llvm.org/D38195
llvm-svn: 314153
The 1st attempt at this:
https://reviews.llvm.org/rL314117
was reverted at:
https://reviews.llvm.org/rL314118
because of bot fails for clang tests that were checking optimized IR. That should be fixed with:
https://reviews.llvm.org/rL314144
...so try again.
Original commit message:
The transform to convert an extract-of-a-select-of-vectors was added at:
https://reviews.llvm.org/rL194013
And a question about the validity of this transform was raised in the review:
https://reviews.llvm.org/D1539:
...but not answered AFAICT>
Most of the motivating cases in that patch are now handled by other combines. These are the tests that were added with
the original commit, but they are not regressing even after we remove the transform in this patch.
The diffs we see after removing this transform cause us to avoid increasing the instruction count, so we don't want to do
those transforms as canonicalizations.
The motivation for not turning a vector-select-of-vectors into a scalar operation is shown in PR33301:
https://bugs.llvm.org/show_bug.cgi?id=33301
...in those cases, we'll get vector ops with this patch rather than the vector/scalar mix that we currently see.
Differential Revision: https://reviews.llvm.org/D38006
llvm-svn: 314147
Since now SCEV can handle 'urem', an 'urem' is a better canonical form than an 'srem' because it has well-defined behavior
This is a follow up of D34598
Differential Revision: https://reviews.llvm.org/D38072
llvm-svn: 314125
The transform to convert an extract-of-a-select-of-vectors was added at:
rL194013
And a question about the validity of this transform was raised in the review:
https://reviews.llvm.org/D1539:
...but not answered AFAICT>
Most of the motivating cases in that patch are now handled by other combines. These are the tests that were added with
the original commit, but they are not regressing even after we remove the transform in this patch.
The diffs we see after removing this transform cause us to avoid increasing the instruction count, so we don't want to do
those transforms as canonicalizations.
The motivation for not turning a vector-select-of-vectors into a scalar operation is shown in PR33301:
https://bugs.llvm.org/show_bug.cgi?id=33301
...in those cases, we'll get vector ops with this patch rather than the vector/scalar mix that we currently see.
Differential Revision: https://reviews.llvm.org/D38006
llvm-svn: 314117
The result of the isSignBitCheck isn't used anywhere else and this allows us to share the m_APInt call in the likely case that it isn't a sign bit check.
llvm-svn: 314018
We've found a serious issue with the current implementation of loop predication.
The current implementation relies on SCEV and this turned out to be problematic.
To fix the problem we had to rework the pass substantially. We have had the
reworked implementation in our downstream tree for a while. This is the initial
patch of the series of changes to upstream the new implementation.
For now the transformation is limited to the following case:
* The loop has a single latch with either ult or slt icmp condition.
* The step of the IV used in the latch condition is 1.
* The IV of the latch condition is the same as the post increment IV of the guard condition.
* The guard condition is ult.
See the review or the LoopPredication.cpp header for the details about the
problem and the new implementation.
Reviewed By: sanjoy, mkazantsev
Differential Revision: https://reviews.llvm.org/D37569
llvm-svn: 313981
The fix is to avoid invalidating our insertion point in
replaceDbgDeclare:
Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, InsertBefore);
+ if (DII == InsertBefore)
+ InsertBefore = &*std::next(InsertBefore->getIterator());
DII->eraseFromParent();
I had to write a unit tests for this instead of a lit test because the
use list order matters in order to trigger the bug.
The reduced C test case for this was:
void useit(int*);
static inline void inlineme() {
int x[2];
useit(x);
}
void f() {
inlineme();
inlineme();
}
llvm-svn: 313905
.. as well as the two subsequent changes r313826 and r313875.
This leads to segfaults in combination with ASAN. Will forward repro
instructions to the original author (rnk).
llvm-svn: 313876
Summary:
There already was code that tried to remove the dbg.declare, but that code
was placed after we had called
I->replaceAllUsesWith(UndefValue::get(I->getType()));
on the alloca, so when we searched for the relevant dbg.declare, we
couldn't find it.
Now we do the search before we call RAUW so there is a chance to find it.
An existing testcase needed update due to this. Two dbg.declare with undef
were removed and then suddenly one of the two CHECKS failed.
Before this patch we got
call void @llvm.dbg.declare(metadata i24* undef, metadata !14, metadata !DIExpression(DW_OP_LLVM_fragment, 32, 24)), !dbg !15
call void @llvm.dbg.declare(metadata %struct.prog_src_register* undef, metadata !14, metadata !DIExpression()), !dbg !15
call void @llvm.dbg.value(metadata i32 0, metadata !14, metadata !DIExpression(DW_OP_LLVM_fragment, 0, 32)), !dbg !15
call void @llvm.dbg.value(metadata i32 0, metadata !14, metadata !DIExpression(DW_OP_LLVM_fragment, 32, 24)), !dbg !15
and with it we get
call void @llvm.dbg.value(metadata i32 0, metadata !14, metadata !DIExpression(DW_OP_LLVM_fragment, 0, 32)), !dbg !15
call void @llvm.dbg.value(metadata i32 0, metadata !14, metadata !DIExpression(DW_OP_LLVM_fragment, 32, 24)), !dbg !15
However, the CHECKs in the testcase checked things in a silly order, so
they only passed since they found things in the first dbg.declare. Now
we changed the order of the checks and the test passes.
Reviewers: rnk
Reviewed By: rnk
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D37900
llvm-svn: 313875
This patch contains fix for reverted commit
rL312318 which was causing failure due to use
of unchecked dyn_cast to CIInit.
Patch by: Nikola Prica.
llvm-svn: 313870
Revert the patch causing the functional failures.
The patch owner is notified with test cases which fail.
Test case has been provided to Maxim offline.
llvm-svn: 313857
I noticed this inefficiency while investigating PR34603:
https://bugs.llvm.org/show_bug.cgi?id=34603
This fix will likely push another bug (we don't maintain state of 'LateSimplifyCFG')
into hiding, but I'll try to clean that up with a follow-up patch anyway.
llvm-svn: 313829
Summary:
This implements the design discussed on llvm-dev for better tracking of
variables that live in memory through optimizations:
http://lists.llvm.org/pipermail/llvm-dev/2017-September/117222.html
This is tracked as PR34136
llvm.dbg.addr is intended to be produced and used in almost precisely
the same way as llvm.dbg.declare is today, with the exception that it is
control-dependent. That means that dbg.addr should always have a
position in the instruction stream, and it will allow passes that
optimize memory operations on local variables to insert llvm.dbg.value
calls to reflect deleted stores. See SourceLevelDebugging.rst for more
details.
The main drawback to generating DBG_VALUE machine instrs is that they
usually cause LLVM to emit a location list for DW_AT_location. The next
step will be to teach DwarfDebug.cpp how to recognize more DBG_VALUE
ranges as not needing a location list, and possibly start setting
DW_AT_start_offset for variables whose lifetimes begin mid-scope.
Reviewers: aprantl, dblaikie, probinson
Subscribers: eraman, hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D37768
llvm-svn: 313825
We already did (X & C2) > C1 --> (X & C2) != 0, if any bit set in (X & C2) will produce a result greater than C1. But there is an equivalent inverse condition with <= C1 (which will be canonicalized to < C1+1)
Differential Revision: https://reviews.llvm.org/D38065
llvm-svn: 313819
This broke the buildbots, e.g.
http://bb.pgr.jp/builders/test-llvm-i686-linux-RA/builds/391
> Summary:
> This patch tries to vectorize loads of consecutive memory accesses, accessed
> in non-consecutive or jumbled way. An earlier attempt was made with patch D26905
> which was reverted back due to some basic issue with representing the 'use mask'
> jumbled accesses.
>
> This patch fixes the mask representation by recording the 'use mask' in the usertree entry.
>
> Change-Id: I9fe7f5045f065d84c126fa307ef6ebe0787296df
>
> Subscribers: mzolotukhin
>
> Reviewed By: ayal
>
> Differential Revision: https://reviews.llvm.org/D36130
>
> Review comments updated accordingly
>
> Change-Id: I22ab0a8a9bac9d49d74baa81a08e1e486f5e75f0
>
> Added a TODO for sortLoadAccesses API
>
> Change-Id: I3c679bf1865422d1b45e17ea28f1992bca660b58
>
> Modified the TODO for sortLoadAccesses API
>
> Change-Id: Ie64a66cb5f9e2a7610438abb0e750c6e090f9565
>
> Review comment update for using OpdNum to insert the mask in respective location
>
> Change-Id: I016d0c1b29874e979efc0205bbf078991f92edce
>
> Fixes '-Wsign-compare warning' in LoopAccessAnalysis.cpp and code rebase
>
> Change-Id: I64b2ea5e68c1d7b6a028f5ef8251c5a97333f89b
llvm-svn: 313781
In these cases, two selects have constant selectable operands for
both the true and false components and have the same conditional
expression.
We then create two arithmetic operations of the same type and feed a
final select operation using the result of the true arithmetic for the true
operand and the result of the false arithmetic for the false operand and reuse
the original conditionl expression.
The arithmetic operations are naturally folded as a consequence, leaving
only the newly formed select to replace the old arithmetic operation.
Patch by: Michael Berg <michael_c_berg@apple.com>
Differential Revision: https://reviews.llvm.org/D37019
llvm-svn: 313774
Summary:
This patch tries to vectorize loads of consecutive memory accesses, accessed
in non-consecutive or jumbled way. An earlier attempt was made with patch D26905
which was reverted back due to some basic issue with representing the 'use mask'
jumbled accesses.
This patch fixes the mask representation by recording the 'use mask' in the usertree entry.
Change-Id: I9fe7f5045f065d84c126fa307ef6ebe0787296df
Subscribers: mzolotukhin
Reviewed By: ayal
Differential Revision: https://reviews.llvm.org/D36130
Review comments updated accordingly
Change-Id: I22ab0a8a9bac9d49d74baa81a08e1e486f5e75f0
Added a TODO for sortLoadAccesses API
Change-Id: I3c679bf1865422d1b45e17ea28f1992bca660b58
Modified the TODO for sortLoadAccesses API
Change-Id: Ie64a66cb5f9e2a7610438abb0e750c6e090f9565
Review comment update for using OpdNum to insert the mask in respective location
Change-Id: I016d0c1b29874e979efc0205bbf078991f92edce
Fixes '-Wsign-compare warning' in LoopAccessAnalysis.cpp and code rebase
Change-Id: I64b2ea5e68c1d7b6a028f5ef8251c5a97333f89b
llvm-svn: 313771
Summary:
The fix for dead stripping analysis in the case of SamplePGO indirect
calls to local functions (r313151) introduced the possibility of an
infinite loop.
Make sure we check for the value being already live after we update it
for SamplePGO indirect call handling.
Reviewers: danielcdh
Subscribers: mehdi_amini, inglorion, llvm-commits, eraman
Differential Revision: https://reviews.llvm.org/D38086
llvm-svn: 313766
Summary:
This patch tries to vectorize loads of consecutive memory accesses, accessed
in non-consecutive or jumbled way. An earlier attempt was made with patch D26905
which was reverted back due to some basic issue with representing the 'use mask' of
jumbled accesses.
This patch fixes the mask representation by recording the 'use mask' in the usertree entry.
Change-Id: I9fe7f5045f065d84c126fa307ef6ebe0787296df
Reviewers: mkuper, loladiro, Ayal, zvi, danielcdh
Reviewed By: Ayal
Subscribers: mzolotukhin
Differential Revision: https://reviews.llvm.org/D36130
Commit after rebase for patch D36130
Change-Id: I8add1c265455669ef288d880f870a9522c8c08ab
llvm-svn: 313736
Summary:
With this change:
- Methods in LoopBase trip an assert if the receiver has been invalidated
- LoopBase::clear frees up the memory held the LoopBase instance
This change also shuffles things around as necessary to work with this stricter invariant.
Reviewers: chandlerc
Subscribers: mehdi_amini, mcrosier, llvm-commits
Differential Revision: https://reviews.llvm.org/D38055
llvm-svn: 313708
Summary:
See comment for why I think this is a good idea.
This change also:
- Removes an SCEV test case. The SCEV test was not testing anything useful (most of it was `#if 0` ed out) and it would need to be updated to deal with a private ~Loop::Loop.
- Updates the loop pass manager test case to deal with a private ~Loop::Loop.
- Renames markAsRemoved to markAsErased to contrast with removeLoop, via the usual remove vs. erase idiom we already have for instructions and basic blocks.
Reviewers: chandlerc
Subscribers: mehdi_amini, mcrosier, llvm-commits
Differential Revision: https://reviews.llvm.org/D37996
llvm-svn: 313695
In the lambda we are now returning the remark by value so we need to preserve
its type in the insertion operator. This requires making the insertion
operator generic.
I've also converted a few cases to use the new API. It seems to work pretty
well. See the LoopUnroller for a slightly more interesting case.
llvm-svn: 313691
Summary: In the ThinLTO compilation, if a function is inlined in the profiling binary, we need to inline it before annotation. If the callee is not available in the primary module, a first step is needed to import that callee function. For the current implementation, if the call is an indirect call, which has been promoted to >1 targets and inlined, SamplePGO will only import one target with the largest sample count. This patch fixed the bug to import all targets instead.
Reviewers: tejohnson, davidxl
Reviewed By: tejohnson
Subscribers: sanjoy, llvm-commits, mehdi_amini
Differential Revision: https://reviews.llvm.org/D36637
llvm-svn: 313678
Summary: Fix the bug when promoted call return type mismatches with the promoted function, we should not try to inline it. Otherwise it may lead to compiler crash.
Reviewers: davidxl, tejohnson, eraman
Reviewed By: tejohnson
Subscribers: llvm-commits, sanjoy
Differential Revision: https://reviews.llvm.org/D38018
llvm-svn: 313658
I've moved the test cases from the InstCombine optimizations to the backend to keep the coverage we had there. It covered every possible immediate so I've preserved the resulting shuffle mask for each of those immediates.
llvm-svn: 313450
CostModel.
The original patch added support for horizontal min/max reductions to
the SLP vectorizer.
This patch causes LLVM to miscompile fairly simple signed min
reductions. I have attached a test progrom to http://llvm.org/PR34635
that shows the behavior change after this patch. We found this in a test
for the open source Eigen library, but also in other code.
Unfortunately, the revert is moderately challenging. It required
reverting:
r313042: [SLP] Test with multiple uses of conditional op and wrong parent.
r312853: [SLP] Fix buildbots, NFC.
r312793: [SLP] Fix the warning about paths not returning the value, NFC.
r312791: [SLP] Support for horizontal min/max reduction.
And even then, I had to completely skip reverting the changes to TTI and
CostModel because r312832 rewrote so much of this code. Plus, the cost
modeling changes aren implicated in the miscompile, so they should be
fine and will just not be used until this gets re-introduced.
llvm-svn: 313409
It enables OptimizationRemarkEmitter::allowExtraAnalysis and MachineOptimizationRemarkEmitter::allowExtraAnalysis to return true not only for -fsave-optimization-record but when specific remarks are requested with
command line options.
The diagnostic handler used to be callback now this patch adds a class
DiagnosticHandler. It has virtual method to provide custom diagnostic handler
and methods to control which particular remarks are enabled.
However LLVM-C API users can still provide callback function for diagnostic handler.
llvm-svn: 313390
It enables OptimizationRemarkEmitter::allowExtraAnalysis and MachineOptimizationRemarkEmitter::allowExtraAnalysis to return true not only for -fsave-optimization-record but when specific remarks are requested with
command line options.
The diagnostic handler used to be callback now this patch adds a class
DiagnosticHandler. It has virtual method to provide custom diagnostic handler
and methods to control which particular remarks are enabled.
However LLVM-C API users can still provide callback function for diagnostic handler.
llvm-svn: 313382
Add a profitability heuristic to enable runtime unrolling of multi-exit
loop: There can be atmost two unique exit blocks for the loop and the
second exit block should be a deoptimizing block. Also, there can be one
other exiting block other than the latch exiting block. The reason for
the latter is so that we limit the number of branches in the unrolled
code to being at most the unroll factor. Deoptimizing blocks are rarely
taken so these additional number of branches created due to the
unrolling are predictable, since one of their target is the deopt block.
Reviewers: apilipenko, reames, evstupac, mkuper
Subscribers: llvm-commits
Reviewed by: reames
Differential Revision: https://reviews.llvm.org/D35380
llvm-svn: 313363
During runtime unrolling on loops with multiple exits, we update the
exit blocks with the correct phi values from both original and remainder
loop.
In this process, we lookup the VMap for the mapped incoming phi values,
but did not update the VMap if a default entry was generated in the VMap
during the lookup. This default value is generated when constants or
values outside the current loop are looked up.
This patch fixes the assertion failure when null entries are present in
the VMap because of this lookup. Added a testcase that showcases the
problem.
llvm-svn: 313358
Patch tries to improve vectorization of the following code:
void add1(int * __restrict dst, const int * __restrict src) {
*dst++ = *src++;
*dst++ = *src++ + 1;
*dst++ = *src++ + 2;
*dst++ = *src++ + 3;
}
Allows to vectorize even if the very first operation is not a binary add, but just a load.
Reviewers: spatel, mzolotukhin, mkuper, hfinkel, RKSimon, filcab, ABataev, davide
Subscribers: llvm-commits, RKSimon
Differential Revision: https://reviews.llvm.org/D28907
llvm-svn: 313348
Summary: Move to LoopUtils method that collects all children of a node inside a loop.
Reviewers: majnemer, sanjoy
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D37870
llvm-svn: 313322
Summary: SampleProfileLoader inlines hot functions if it is inlined in the profiled binary. However, the inline needs to be guarded by legality check, otherwise it could lead to correctness issues.
Reviewers: eraman, davidxl
Reviewed By: eraman
Subscribers: vitalybuka, sanjoy, llvm-commits
Differential Revision: https://reviews.llvm.org/D37779
llvm-svn: 313277
This patch fixes pr34283, which exposed that the computation of
maximum legal width for vectorization was wrong, because it relied
on MaxInterleaveFactor to obtain the maximum stride used in the loop,
however not all strided accesses in the loop have an interleave-group
associated with them.
Instead of recording the maximum stride in the loop, which can be over
conservative (e.g. if the access with the maximum stride is not involved
in the dependence limitation), this patch tracks the actual maximum legal
width imposed by accesses that are involved in dependencies.
Differential Revision: https://reviews.llvm.org/D37507
llvm-svn: 313237
This reland includes a fix for the LowerTypeTests pass so that it
looks past aliases when determining which type identifiers are live.
Differential Revision: https://reviews.llvm.org/D37842
llvm-svn: 313229
This broke Chromium's CFI build; see crbug.com/765004.
> We were previously handling aliases during dead stripping by adding
> the aliased global's "original name" GUID to the worklist. This will
> lead to incorrect behaviour if the global has local linkage because
> the original name GUID will not correspond to the global's GUID in
> the summary.
>
> Because an alias is just another name for the global that it
> references, there is no need to mark the referenced global as used,
> or to follow references from any other copies of the global. So all
> we need to do is to follow references from the aliasee's summary
> instead of the alias.
>
> Differential Revision: https://reviews.llvm.org/D37789
llvm-svn: 313222
Summary: SampleProfileLoader inlines hot functions if it is inlined in the profiled binary. However, the inline needs to be guarded by legality check, otherwise it could lead to correctness issues.
Reviewers: eraman, davidxl
Reviewed By: eraman
Subscribers: sanjoy, llvm-commits
Differential Revision: https://reviews.llvm.org/D37779
llvm-svn: 313195
These are changes to reduce redundant computations when calculating a
feasible vectorization factor:
1. early return when target has no vector registers
2. don't compute register usage for the default VF.
Suggested during review for D37702.
llvm-svn: 313176
Summary:
Added text options to -pgo-view-counts and -pgo-view-raw-counts that dump block frequency and branch probability info in text.
This is useful when the graph is very large and complex (the dot command crashes, lines/edges too close to tell apart, hard to navigate without textual search) or simply when text is preferred.
Reviewers: davidxl
Reviewed By: davidxl
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D37776
llvm-svn: 313159
We were previously handling aliases during dead stripping by adding
the aliased global's "original name" GUID to the worklist. This will
lead to incorrect behaviour if the global has local linkage because
the original name GUID will not correspond to the global's GUID in
the summary.
Because an alias is just another name for the global that it
references, there is no need to mark the referenced global as used,
or to follow references from any other copies of the global. So all
we need to do is to follow references from the aliasee's summary
instead of the alias.
Differential Revision: https://reviews.llvm.org/D37789
llvm-svn: 313157
Summary:
SamplePGO indirect call profiles record the target as the original GUID
for statics. The importer had special handling to map to the normal GUID
in that case. The dead global analysis needs the same treatment or
inconsistencies arise, resulting in linker unsats due to some dead
symbols being exported and kept, leaving in references to other dead
symbols that are removed.
This can happen when a SamplePGO profile collected by one binary is used
for a different binary, so the indirect call profiles may not accurately
reflect live targets.
Reviewers: danielcdh
Subscribers: mehdi_amini, inglorion, llvm-commits, eraman
Differential Revision: https://reviews.llvm.org/D37783
llvm-svn: 313151
When converting a PHI into a series of 'select' instructions to combine the
incoming values together according their edge masks, initialize the first
value to the incoming value In0 of the first predecessor, instead of
generating a redundant assignment 'select(Cond[0], In0, In0)'. The latter
fails when the Cond[0] mask is null, representing a full mask, which can
happen only when there's a single incoming value.
No functional changes intended nor expected other than surviving null Cond[0]'s.
This fix follows D35725, which introduced using null to represent full masks.
Differential Revision: https://reviews.llvm.org/D37619
llvm-svn: 313119
Factor out the reachability such that multiple queries to find reachability of values are fast. This is based on finding
the ANTIC points
in the CFG which do not change during hoisting. The ANTIC points are basically the dominance-frontiers in the inverse
graph. So we introduce a data structure (CHI nodes)
to keep track of values flowing out of a basic block. We only do this for values with multiple occurrences in the
function as they are the potential hoistable candidates.
This patch allows us to hoist instructions to a basic block with >2 successors, as well as deal with infinite loops in a
trivial way.
Relevant test cases are added to show the functionality as well as regression fixes from PR32821.
Regression from previous GVNHoist:
We do not hoist fully redundant expressions because fully redundant expressions are already handled by NewGVN
Differential Revision: https://reviews.llvm.org/D35918
Reviewers: dberlin, sebpop, gberry,
llvm-svn: 313116
Summary:
This should improve optimized debug info for address-taken variables at
the cost of inaccurate debug info in some situations.
We patched this into clang and deployed this change to Chromium
developers, and this significantly improved debuggability of optimized
code. The long-term solution to PR34136 seems more and more like it's
going to take a while, so I would like to commit this change under a
flag so that it can be used as a stop-gap measure.
This flag should really help so for C++ aggregates like std::string and
std::vector, which are typically address-taken, even after inlining, and
cannot be SROA-ed.
Reviewers: aprantl, dblaikie, probinson, dberlin
Subscribers: hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D36596
llvm-svn: 313108
Summary: This change passes down ACT to SampleProfileLoader for the new PM. Also remove the default value for SampleProfileLoader class as it is not used.
Reviewers: eraman, davidxl
Reviewed By: eraman
Subscribers: sanjoy, llvm-commits
Differential Revision: https://reviews.llvm.org/D37773
llvm-svn: 313080
Summary:
The current promoteLoopAccessesToScalars method receives an AliasSet, but
the information used is in fact a list of Value*, known to must alias.
Create the list ahead of time to make this method independent of the AliasSet class.
While there is no functionality change, this adds overhead for creating
a set of Value*, when promotion would normally exit earlier.
This is meant to be as a first refactoring step in order to start replacing
AliasSetTracker with MemorySSA.
And while the end goal is to redesign LICM, the first few steps will focus on
adding MemorySSA as an alternative to the AliasSetTracker using most of the
existing functionality.
Reviewers: mkuper, danielcdh, dberlin
Subscribers: sanjoy, chandlerc, gberry, davide, llvm-commits
Differential Revision: https://reviews.llvm.org/D35439
llvm-svn: 313075
Summary:
When the MaxVectorSize > ConstantTripCount, we should just clamp the
vectorization factor to be the ConstantTripCount.
This vectorizes loops where the TinyTripCountThreshold >= TripCount < MaxVF.
Earlier we were finding the maximum vector width, which could be greater than
the trip count itself. The Loop vectorizer does all the work for generating a
vectorizable loop, but in the end we would always choose the scalar loop (since
the VF > trip count). This allows us to choose the VF keeping in mind the trip
count if available.
This is a fix on top of rL312472.
Reviewers: Ayal, zvi, hfinkel, dneilson
Reviewed by: Ayal
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D37702
llvm-svn: 313046
Not all targets support the use of absolute symbols to export
constants. In particular, ARM has a wide variety of constant encodings
that cannot currently be relocated by linkers. So instead of exporting
the constants using symbols, export them directly in the summary.
The values of the constants are left as zeroes on targets that support
symbolic exports.
This may result in more cache misses when targeting those architectures
as a result of arbitrary changes in constant values, but this seems
somewhat unavoidable for now.
Differential Revision: https://reviews.llvm.org/D37407
llvm-svn: 312967
It now knows the tricks of both functions.
Also, fix a bug that considered allocas of non-zero address space to be always non null
Differential Revision: https://reviews.llvm.org/D37628
llvm-svn: 312869
This is intended to be a superset of the functionality from D31037 (EarlyCSE) but implemented
as an independent pass, so there's no stretching of scope and feature creep for an existing pass.
I also proposed a weaker version of this for SimplifyCFG in D30910. And I initially had almost
this same functionality as an addition to CGP in the motivating example of PR31028:
https://bugs.llvm.org/show_bug.cgi?id=31028
The advantage of positioning this ahead of SimplifyCFG in the pass pipeline is that it can allow
more flattening. But it needs to be after passes (InstCombine) that could sink a div/rem and
undo the hoisting that is done here.
Decomposing remainder may allow removing some code from the backend (PPC and possibly others).
Differential Revision: https://reviews.llvm.org/D37121
llvm-svn: 312862
SLP vectorizer supports horizontal reductions for Add/FAdd binary
operations. Patch adds support for horizontal min/max reductions.
Function getReductionCost() is split to getArithmeticReductionCost() for
binary operation reductions and getMinMaxReductionCost() for min/max
reductions.
Patch fixes PR26956.
Differential revision: https://reviews.llvm.org/D27846
llvm-svn: 312791
This is required when targeting COFF, as the comdat name must match
one of the names of the symbols in the comdat.
Differential Revision: https://reviews.llvm.org/D37550
llvm-svn: 312767
r312318 - Debug info for variables whose type is shrinked to bool
r312325, r312424, r312489 - Test case for r312318
Revision 312318 introduced a null dereference bug.
Details in https://bugs.llvm.org/show_bug.cgi?id=34490
llvm-svn: 312758
Consider this type of a loop:
for (...) {
...
if (...) continue;
...
}
Normally, the "continue" would branch to the loop control code that
checks whether the loop should continue iterating and which contains
the (often) unique loop latch branch. In certain cases jump threading
can "thread" the inner branch directly to the loop header, creating
a second loop latch. Loop canonicalization would then transform this
loop into a loop nest. The problem with this is that in such a loop
nest neither loop is countable even if the original loop was. This
may inhibit subsequent loop optimizations and be detrimental to
performance.
Differential Revision: https://reviews.llvm.org/D36404
llvm-svn: 312664
This is a preliminary step towards solving the remaining part of PR27145 - IR for isfinite():
https://bugs.llvm.org/show_bug.cgi?id=27145
In order to solve that one more generally, we need to add matching for and/or of fcmp ord/uno
with a constant operand.
But while looking at those patterns, I realized we were missing a canonicalization for nonzero
constants. Rather than limiting to just folds for constants, we're adding a general value
tracking method for this based on an existing DAG helper.
By transforming everything to 0.0, we can simplify the existing code in foldLogicOfFCmps()
and pick up missing vector folds.
Differential Revision: https://reviews.llvm.org/D37427
llvm-svn: 312591
Instead of creating a Constant and then calling m_APInt with it (which will always return true). Just create an APInt initially, and use that for the checks in isSelect01 function. If it turns out we do need the Constant, create it from the APInt.
This is a refactor for a future patch that will do some more checks of the constant values here.
llvm-svn: 312517
Summary:
Improve how MaxVF is computed while taking into account that MaxVF should not be larger than the loop's trip count.
Other than saving on compile-time by pruning the possible MaxVF candidates, this patch fixes pr34438 which exposed the following flow:
1. Short trip count identified -> Don't bail out, set OptForSize:=True to avoid tail-loop and runtime checks.
2. Compute MaxVF returned 16 on a target supporting AVX512.
3. OptForSize -> choose VF:=MaxVF.
4. Bail out because TripCount = 8, VF = 16, TripCount % VF !=0 means we need a tail loop.
With this patch step 2. will choose MaxVF=8 based on TripCount.
Reviewers: Ayal, dorit, mkuper, hfinkel
Reviewed By: hfinkel
Subscribers: hfinkel, llvm-commits
Differential Revision: https://reviews.llvm.org/D37425
llvm-svn: 312472
Debug information can be, and was, corrupted when the runtime
remainder loop was fully unrolled. This is because a !null node can
be created instead of a unique one describing the loop. In this case,
the original node gets incorrectly updated with the NewLoopID
metadata.
In the case when the remainder loop is going to be quickly fully
unrolled, there isn't the need to add loop metadata for it anyway.
Differential Revision: https://reviews.llvm.org/D37338
llvm-svn: 312471
In addition to removing chunks of duplicated code, we don't
want these to diverge. If there's a fold for one, there
should be a fold of the other via DeMorgan's Laws.
llvm-svn: 312420
We had these locals:
Value *Op0RHS = LHS->getOperand(1);
Value *Op1LHS = RHS->getOperand(0);
...so we confusingly transposed the meaning of left/right and op0/op1.
llvm-svn: 312418