Previously, MemDepPrinter handled volatile and unordered accesses without involving MemoryDependencyAnalysis. By making a slight tweak to the documented interface - which is respected by both callers - we can move this responsibility to MDA for the benefit of any future callers. This is basically just cleanup.
In the future, we may decide to extend MDA's non local dependency analysis to return useful results for ordered or volatile loads. I believe (but have not really checked in detail) that local dependency analyis does get useful results for ordered, but not volatile, loads.
llvm-svn: 225483
Previously, MemoryDependenceAnalysis::getNonLocalPointerDependency was taking a list of properties about the instruction being queried. Since I'm about to need one more property to be passed down through the infrastructure - I need to know a query instruction is non-volatile in an inner helper - fix the interface once and for all.
I also added some assertions and behaviour clarifications around volatile and ordered field accesses. At the moment, this is mostly to document expected behaviour. The only non-standard instructions which can currently reach this are atomic, but unordered, loads and stores. Neither ordered or volatile accesses can reach here.
The call in GVN is protected by an isSimple check when it first considers the load. The calls in MemDepPrinter are protected by isUnordered checks. Both utilities also check isVolatile for loads and stores.
llvm-svn: 225481
This support is still incomplete and consequently hidden behind a switch that
needs to be enabled. One problem is ATM that we incorrectly interpret very large
unsigned values as negative values even if used in an unsigned comparision.
llvm-svn: 225480
Create new copies of distinct `MDNode`s instead of following the
uniquing `MDNode` logic.
Just like self-references (or other cycles), `MapMetadata()` creates a
new node. In practice most calls use `RF_NoModuleLevelChanges`, in
which case nothing is duplicated anyway.
Part of PR22111.
llvm-svn: 225476
Propagate whether `MDNode`s are 'distinct' through the other types of IR
(assembly and bitcode). This adds the `distinct` keyword to assembly.
Currently, no one actually calls `MDNode::getDistinct()`, so these nodes
only get created for:
- self-references, which are never uniqued, and
- nodes whose operands are replaced that hit a uniquing collision.
The concept of distinct nodes is still not quite first-class, since
distinct-ness doesn't yet survive across `MapMetadata()`.
Part of PR22111.
llvm-svn: 225474
MachineLICM uses a callback named hasLowDefLatency to determine if an
instruction def operand has a 'low' latency. If all relevant operands have a
'low' latency, the instruction is considered too cheap to hoist out of loops
even in low-register-pressure situations. On PowerPC cores, both the embedded
cores and the others, there is no reason to believe that this is a good choice:
all instructions have a cost inside a loop, and hoisting them when not limited
by register pressure is a reasonable default.
llvm-svn: 225471
Add a command-line option to enable hoisting even cheap instructions (in
low-register-pressure situations). This is turned off by default, but has
proved useful for testing purposes.
llvm-svn: 225470
The assert was being triggered when the distance between a constant pool entry
and its user exceeded the maximally allowed distance after thumb2 branch
shortening. A padding was inserted after a thumb2 branch instruction was shrunk,
which caused the user to be out of range. This is wrong as the padding should
have been inserted by the layout algorithm so that the distance between two
instructions doesn't grow later during thumb2 instruction optimization.
This commit fixes the code in ARMConstantIslands::createNewWater to call
computeBlockSize and set BasicBlock::Unalign when a branch instruction is
inserted to create new water after a basic block. A non-zero Unalign causes
the worst-case padding to be inserted when adjustBBOffsetsAfter is called to
recompute the basic block offsets.
rdar://problem/19130476
llvm-svn: 225467
It also comes with a (rudimentary) test case that gets itself in a failed update scenario, and checks that we don't crash
This is the easiest case I could think of that forces the failed update case Zachary was seeing
llvm-svn: 225463
AF = dyn_cast<SCEVAddRecExpr>(Pair.second) may be NULL for some SCEVs that we do
not support. When reporting the error we still want to pass a pointer that is
known to always be non-NULL.
I do not yet have a test case for this, unfortunately.
llvm-svn: 225461
Summary: The PIC additions didn't update the prologue and epilogue code to save and restore r30 (PIC base register). This does that.
Test Plan: Tests updated.
Reviewers: hfinkel
Reviewed By: hfinkel
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D6876
llvm-svn: 225450
- includes header/footer as required by MELPA
- correctly handles buffers that are not associated with a file
- displays stderr and exit code of clang-format process
- customizable via the emacs customization interface and file-/directory-
local variables
Patch by Johann Klähn.
llvm-svn: 225447
This partially fixes PR13007 (ARM CodeGen fails with large stack
alignment): for ARM and Thumb2 targets, but not for Thumb1, as it
seems stack alignment for Thumb1 targets hasn't been supported at
all.
Producing an aligned stack pointer is done by zero-ing out the lower
bits of the stack pointer. The BIC instruction was used for this.
However, the immediate field of the BIC instruction only allows to
encode an immediate that can zero out up to a maximum of the 8 lower
bits. When a larger alignment is requested, a BIC instruction cannot
be used; llvm was silently producing incorrect code in this case.
This commit fixes code generation for large stack aligments by
using the BFC instruction instead, when the BFC instruction is
available. When not, it uses 2 instructions: a right shift,
followed by a left shift to zero out the lower bits.
The lowering of ARM::Int_eh_sjlj_dispatchsetup still has code
that unconditionally uses BIC to realign the stack pointer, so it
very likely has the same problem. However, I wasn't able to
produce a test case for that. This commit adds an assert so that
the compiler will fail the assert instead of silently generating
wrong code if this is ever reached.
llvm-svn: 225446
Its functionality has been replaced by calling
SIInstrInfo::legalizeOperands() from
SIISelLowering::AdjstInstrPostInstrSelection() and running the
SIFoldOperands and SIShrinkInstructions passes.
llvm-svn: 225445
This makes piped output easier to read in many instances.
Before:
llvm::errs() << aaaa << std::endl << bbbb << std::endl;
After:
llvm::errs() << aaaa << std::endl
<< bbbb << std::endl;
Also fix a few instance of "don't use else after return" as per the
coding standards.
llvm-svn: 225444
If there are some non-ascii character in the input source code, the
column index might be smallar than the byte index. This will result
in two possible assertion failures. This CL fixes the computation of
the column index and byte index.
1. The assertion in startOfNextColumn() and startOfPreviousColumn()
should not be raised when the byte index is greater than the column
index since the non-ascii characters may use more than one bytes to
store a character in a column.
2. The length of the caret line should be equal to the number of columns
of source line, instead of the length of the source line. Otherwise,
the assertion in selectInterestingSourceRegion will be raised because
the removed columns plus the kept columns are not greater than the max
column, which means that we should not remove any column at all.
llvm-svn: 225442
The call lowering assumes that if the callee is a global, we want to emit a direct call.
This is correct for regular globals, but not for TLS ones.
Differential Revision: http://reviews.llvm.org/D6862
llvm-svn: 225438
PEI tries to keep track of how much starting or ending a call sequence adjusts the stack pointer by, so that it can resolve frame-index references. Currently, it takes a very simplistic view of how SP adjustments are done - both FrameStartOpcode and FrameDestroyOpcode adjust it exactly by the amount written in its first argument.
This view is in fact incorrect for some targets (e.g. due to stack re-alignment, or because it may want to adjust the stack pointer in multiple steps). However, that doesn't cause breakage, because most targets (the only in-tree exception appears to be 32-bit ARM) rely on being able to simplify the call frame pseudo-instructions earlier, so this code is never hit.
Moving the computation into TargetInstrInfo allows targets to override the way the adjustment is computed if they need to have a non-zero SPAdj.
Differential Revision: http://reviews.llvm.org/D6863
llvm-svn: 225437
Summary:
With this patch, llgo uses ssautil.Switches
to reconstitute (and synthesise) switches,
which can then be lowered to lookup tables,
trees, etc.
We currently only handle integer const case
switches. We erase the comparison blocks (other
than the initial block), and generate a switch
instruction at the end of the block starting
the if-else-if chain. ssautil.Switches does
not remove duplicate const cases (e.g. same
operands for "||"), so we do this in llgo for
now.
Test Plan: lit test added
Reviewers: pcc
Reviewed By: pcc
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D6831
llvm-svn: 225433