Commit Graph

107 Commits

Author SHA1 Message Date
Sean Silva 36e0d01e13 Consistently use FunctionAnalysisManager
Besides a general consistently benefit, the extra layer of indirection
allows the mechanical part of https://reviews.llvm.org/D23256 that
requires touching every transformation and analysis to be factored out
cleanly.

Thanks to David for the suggestion.

llvm-svn: 278077
2016-08-09 00:28:15 +00:00
Charles Davis e9c32c7ed3 Revert "[X86] Support the "ms-hotpatch" attribute."
This reverts commit r278048. Something changed between the last time I
built this--it takes awhile on my ridiculously slow and ancient
computer--and now that broke this.

llvm-svn: 278053
2016-08-08 21:20:15 +00:00
Charles Davis 0822aa118e [X86] Support the "ms-hotpatch" attribute.
Summary:
Based on two patches by Michael Mueller.

This is a target attribute that causes a function marked with it to be
emitted as "hotpatchable". This particular mechanism was originally
devised by Microsoft for patching their binaries (which they are
constantly updating to stay ahead of crackers, script kiddies, and other
ne'er-do-wells on the Internet), but is now commonly abused by Windows
programs to hook API functions.

This mechanism is target-specific. For x86, a two-byte no-op instruction
is emitted at the function's entry point; the entry point must be
immediately preceded by 64 (32-bit) or 128 (64-bit) bytes of padding.
This padding is where the patch code is written. The two byte no-op is
then overwritten with a short jump into this code. The no-op is usually
a `movl %edi, %edi` instruction; this is used as a magic value
indicating that this is a hotpatchable function.

Reviewers: majnemer, sanjoy, rnk

Subscribers: dberris, llvm-commits

Differential Revision: https://reviews.llvm.org/D19908

llvm-svn: 278048
2016-08-08 21:01:39 +00:00
Alina Sbirlea 6f937b1144 LoadStoreVectorizer: Remove TargetBaseAlign. Keep alignment for stack adjustments.
Summary:
TargetBaseAlign is no longer required since LSV checks if target allows misaligned accesses.
A constant defining a base alignment is still needed for stack accesses where alignment can be adjusted.

Previous patch (D22936) was reverted because tests were failing. This patch also fixes the cause of those failures:
- x86 failing tests either did not have the right target, or the right alignment.
- NVPTX failing tests did not have the right alignment.
- AMDGPU failing test (merge-stores) should allow vectorization with the given alignment but the target info
  considers <3xi32> a non-standard type and gives up early. This patch removes the condition and only checks
  for a maximum size allowed and relies on the next condition checking for %4 for correctness.
  This should be revisited to include 3xi32 as a MVT type (on arsenm's non-immediate todo list).

Note that checking the sizeInBits for a MVT is undefined (leads to an assertion failure),
so we need to create an EVT, hence the interface change in allowsMisaligned to include the Context.

Reviewers: arsenm, jlebar, tstellarAMD

Subscribers: jholewinski, arsenm, mzolotukhin, llvm-commits

Differential Revision: https://reviews.llvm.org/D23068

llvm-svn: 277735
2016-08-04 16:38:44 +00:00
Sjoerd Meijer 38c2cd0c14 This implements a more optimal algorithm for selecting a base constant in
constant hoisting. It not only takes into account the number of uses and the
cost of expressions in which constants appear, but now also the resulting
integer range of the offsets. Thus, the algorithm maximizes the number of uses
within an integer range that will enable more efficient code generation. On
ARM, for example, this will enable code size optimisations because less
negative offsets will be created. Negative offsets/immediates are not supported
by Thumb1 thus preventing more compact instruction encoding.

Differential Revision: http://reviews.llvm.org/D21183

llvm-svn: 275382
2016-07-14 07:44:20 +00:00
Alina Sbirlea 327955e057 Add TLI.allowsMisalignedMemoryAccesses to LoadStoreVectorizer
Summary: Extend TTI to access TLI.allowsMisalignedMemoryAccesses(). Check condition when vectorizing load and store chains.
Add additional parameters: AddressSpace, Alignment, Fast.

Reviewers: llvm-commits, jlebar

Subscribers: arsenm, mzolotukhin

Differential Revision: http://reviews.llvm.org/D21935

llvm-svn: 275100
2016-07-11 20:46:17 +00:00
Jingyue Wu 15f3e82d42 [TTI] Expose TTI::getGEPCost and use it in SLSR and NaryReassociate.
NFC.

llvm-svn: 274940
2016-07-08 21:48:05 +00:00
Chandler Carruth 164a2aa6f4 [PM] Remove support for omitting the AnalysisManager argument to new
pass manager passes' `run` methods.

This removes a bunch of SFINAE goop from the pass manager and just
requires pass authors to accept `AnalysisManager<IRUnitT> &` as a dead
argument. This is a small price to pay for the simplicity of the system
as a whole, despite the noise that changing it causes at this stage.

This will also helpfull allow us to make the signature of the run
methods much more flexible for different kinds af passes to support
things like intelligently updating the pass's progression over IR units.

While this touches many, many, files, the changes are really boring.
Mostly made with the help of my trusty perl one liners.

Thanks to Sean and Hal for bouncing ideas for this with me in IRC.

llvm-svn: 272978
2016-06-17 00:11:01 +00:00
Matt Arsenault 8dad57cc49 TTI: Add hook for memory width to vectorize
llvm-svn: 272964
2016-06-16 21:43:12 +00:00
Benjamin Kramer 82de7d323d Apply clang-tidy's misc-move-constructor-init throughout LLVM.
No functionality change intended, maybe a tiny performance improvement.

llvm-svn: 270997
2016-05-27 14:27:24 +00:00
Matthew Simpson e5dfb08fcb [TTI] Add hook for vector extract with extension
This change adds a new hook for estimating the cost of vector extracts followed
by zero- and sign-extensions. The motivating example for this change is the
SMOV and UMOV instructions on AArch64. These instructions move data from vector
to general purpose registers while performing the corresponding extension
(sign-extend for SMOV and zero-extend for UMOV) at the same time. For these
operations, TargetTransformInfo can assume the extensions are free and only
report the cost of the vector extract. The SLP vectorizer has been updated to
make use of the new hook.

Differential Revision: http://reviews.llvm.org/D18523

llvm-svn: 267725
2016-04-27 15:20:21 +00:00
Justin Lebar 8650a4da93 [TTI] Add getInliningThresholdMultiplier.
Summary:
InlineCost's threshold is multiplied by this value.  This lets us adjust
the inlining threshold up or down on a per-target basis.  For example,
we might want to increase the threshold on targets where calls are
unusually expensive.

Reviewers: chandlerc

Subscribers: llvm-commits

Differential Revision: http://reviews.llvm.org/D18560

llvm-svn: 266405
2016-04-15 01:38:48 +00:00
Renato Golin 5cb666add7 [ARM] Adding IEEE-754 SIMD detection to loop vectorizer
Some SIMD implementations are not IEEE-754 compliant, for example ARM's NEON.

This patch teaches the loop vectorizer to only allow transformations of loops
that either contain no floating-point operations or have enough allowance
flags supporting lack of precision (ex. -ffast-math, Darwin).

For that, the target description now has a method which tells us if the
vectorizer is allowed to handle FP math without falling into unsafe
representations, plus a check on every FP instruction in the candidate loop
to check for the safety flags.

This commit makes LLVM behave like GCC with respect to ARM NEON support, but
it stops short of fixing the underlying problem: sub-normals. Neither GCC
nor LLVM have a flag for allowing sub-normal operations. Before this patch,
GCC only allows it using unsafe-math flags and LLVM allows it by default with
no way to turn it off (short of not using NEON at all).

As a first step, we push this change to make it safe and in sync with GCC.
The second step is to discuss a new sub-normal's flag on both communitues
and come up with a common solution. The third step is to improve the FastMath
flags in LLVM to encode sub-normals and use those flags to restrict NEON FP.

Fixes PR16275.

llvm-svn: 266363
2016-04-14 20:42:18 +00:00
David Majnemer 0f26b0aeb4 [CodeGen] Teach LLVM how to lower @llvm.{min,max}num to {MIN,MAX}NAN
The behavior of {MIN,MAX}NAN differs from that of {MIN,MAX}NUM when only
one of the inputs is NaN: -NUM will return the non-NaN argument while
-NAN would return NaN.

It is desirable to lower to @llvm.{min,max}num to -NAN if they don't
have a native instruction for -NUM.  Notably, ARMv7 NEON's vmin has the
-NAN semantics.

N.B.  Of course, it is only safe to do this if the intrinsic call is
marked nnan.

llvm-svn: 266279
2016-04-14 07:13:24 +00:00
Adam Nemet 709e3046ee [LoopDataPrefetch] Add TTI to limit the number of iterations to prefetch ahead
Summary:
It can hurt performance to prefetch ahead too much.  Be conservative for
now and don't prefetch ahead more than 3 iterations on Cyclone.

Reviewers: hfinkel

Subscribers: llvm-commits, mzolotukhin

Differential Revision: http://reviews.llvm.org/D17949

llvm-svn: 263772
2016-03-18 00:27:43 +00:00
Adam Nemet 6d8beeca53 [LoopDataPrefetch/Aarch64] Allow selective prefetching of large-strided accesses
Summary:
And use this TTI for Cyclone.  As it was explained in the original RFC
(http://thread.gmane.org/gmane.comp.compilers.llvm.devel/92758), the HW
prefetcher work up to 2KB strides.

I am also adding tests for this and the previous change (D17943):

* Cyclone prefetching accesses with a large stride
* Cyclone not prefetching accesses with a small stride
* Generic Aarch64 subtarget not prefetching either

Reviewers: hfinkel

Subscribers: aemerson, rengolin, llvm-commits, mzolotukhin

Differential Revision: http://reviews.llvm.org/D17945

llvm-svn: 263771
2016-03-18 00:27:38 +00:00
Chandler Carruth b4faf13c15 [PM] Implement the final conclusion as to how the analysis IDs should
work in the face of the limitations of DLLs and templated static
variables.

This requires passes that use the AnalysisBase mixin provide a static
variable themselves. So as to keep their APIs clean, I've made these
private and befriended the CRTP base class (which is the common
practice).

I've added documentation to AnalysisBase for why this is necessary and
at what point we can go back to the much simpler system.

This is clearly a better pattern than the extern template as it caught
*numerous* places where the template magic hadn't been applied and
things were "just working" but would eventually have broken
mysteriously.

llvm-svn: 263216
2016-03-11 10:22:49 +00:00
NAKAMURA Takumi df0cd72657 [PM] Appease mingw32's auto-import DLL build with minimal tweaks, with fix for clang.
char AnalysisBase::ID should be declared as extern and defined in one module.

llvm-svn: 262188
2016-02-28 17:17:00 +00:00
NAKAMURA Takumi ca04a1f720 Revert r262185, "[PM] Appease mingw32's auto-import DLL build with minimal tweaks."
I'll rework soon.

llvm-svn: 262186
2016-02-28 16:54:06 +00:00
NAKAMURA Takumi de40e7437e [PM] Appease mingw32's auto-import DLL build with minimal tweaks.
char AnalysisBase::ID should be declared as extern and defined in one module.

llvm-svn: 262185
2016-02-28 16:38:46 +00:00
Chandler Carruth 3a63435551 [PM] Introduce CRTP mixin base classes to help define passes and
analyses in the new pass manager.

These just handle really basic stuff: turning a type name into a string
statically that is nice to print in logs, and getting a static unique ID
for each analysis.

Sadly, the format of passes in anonymous namespaces makes using their
names in tests really annoying so I've customized the names of the no-op
passes to keep tests sane to read.

This is the first of a few simplifying refactorings for the new pass
manager that should reduce boilerplate and confusion.

llvm-svn: 262004
2016-02-26 11:44:45 +00:00
Adam Nemet dadfbb52f7 [TTI] Add getPrefetchDistance from PPCLoopDataPrefetch, NFC
This patch is part of the work to make PPCLoopDataPrefetch
target-independent
(http://thread.gmane.org/gmane.comp.compilers.llvm.devel/92758).

As it was discussed in the above thread, getPrefetchDistance is
currently using instruction count which may change in the future.

llvm-svn: 258995
2016-01-27 22:21:25 +00:00
Adam Nemet af761104ba [TTI] Add getCacheLineSize
Summary:
And use it in PPCLoopDataPrefetch.cpp.

@hfinkel, please let me know if your preference would be to preserve the
ppc-loop-prefetch-cache-line option in order to be able to override the
value of TTI::getCacheLineSize for PPC.

Reviewers: hfinkel

Subscribers: hulx2000, mcrosier, mssimpso, hfinkel, llvm-commits

Differential Revision: http://reviews.llvm.org/D16306

llvm-svn: 258419
2016-01-21 18:28:36 +00:00
Elena Demikhovsky 5494698828 Implemented cost model for masked gather and scatter operations
The cost is calculated for all X86 targets. When gather/scatter instruction
is not supported we calculate the cost of scalar sequence.

Differential revision: http://reviews.llvm.org/D15677

llvm-svn: 256519
2015-12-28 20:10:59 +00:00
Sanjoy Das 53da2fe729 Revert r243347 "Add TargetTransformInfo::isZExtFree."
r243347 was intended to support a change to LSR (r243348).  That change
to LSR has since had to be reverted (r243939) because it was buggy, and
now the code added in r243347 is untested and unexercised.  Given that,
I think it is appropriate to revert r243347 for now, with the intent of
adding it back in later if I get around to checking in a fixed version
of r243348.

llvm-svn: 252948
2015-11-12 20:51:52 +00:00
Elena Demikhovsky 092858588a Scalarizer for masked.gather and masked.scatter intrinsics.
When the target does not support these intrinsics they should be converted to a chain of scalar load or store operations.
If the mask is not constant, the scalarizer will build a chain of conditional basic blocks.
I added isLegalMaskedGather() isLegalMaskedScatter() APIs.

Differential Revision: http://reviews.llvm.org/D13722

llvm-svn: 251237
2015-10-25 15:37:55 +00:00
Elena Demikhovsky 20662e39f1 Removed parameter "Consecutive" from isLegalMaskedLoad() / isLegalMaskedStore().
Originally I planned to use the same interface for masked gather/scatter and set isConsecutive to "false" in this case.

Now I'm implementing masked gather/scatter and see that the interface is inconvenient. I want to add interfaces isLegalMaskedGather() / isLegalMaskedScatter() instead of using the "Consecutive" parameter in the existing interfaces.

Differential Revision: http://reviews.llvm.org/D13850

llvm-svn: 250686
2015-10-19 07:43:38 +00:00
Eric Christopher a4e5d3cf8e constify the Function parameter to the TTI creation callback and
propagate to all callers/users/etc.

llvm-svn: 247864
2015-09-16 23:38:13 +00:00
Silviu Baranga 61bdc51339 [TTI] Add a hook for specifying per-target defaults for Interleaved Accesses
Summary:
This adds a hook to TTI which enables us to selectively turn on by default
interleaved access vectorization for targets on which we have have performed
the required benchmarking.

Reviewers: rengolin

Subscribers: rengolin, llvm-commits

Differential Revision: http://reviews.llvm.org/D11901

llvm-svn: 244449
2015-08-10 14:50:54 +00:00
Chandler Carruth 93205eb966 [TTI] Make the cost APIs in TargetTransformInfo consistently use 'int'
rather than 'unsigned' for their costs.

For something like costs in particular there is a natural "negative"
value, that of savings or saved cost. As a consequence, there is a lot
of code that subtracts or creates negative values based on cost, all of
which is prone to awkwardness or bugs when dealing with an unsigned
type. Similarly, we *never* want these values to wrap, as that would
cause Very Bad code generation (likely percieved as an infinite loop as
we try to emit over 2^32 instructions or some such insanity).

All around 'int' seems a much better fit for these basic metrics. I've
added asserts to ensure that at least the TTI interface never returns
negative numbers here. If we ever have a use case for negative numbers,
we can remove this, but this way a bug where someone used '-1' to
produce a 'very large' cost will be caught by the assert.

This passes all tests, and is also UBSan clean.

No functional change intended.

Differential Revision: http://reviews.llvm.org/D11741

llvm-svn: 244080
2015-08-05 18:08:10 +00:00
Eric Christopher d566fb12a1 Rename hasCompatibleFunctionAttributes->areInlineCompatible based
on suggestions. Currently the function is only used for inline purposes
and this is more descriptive for the use.

llvm-svn: 243578
2015-07-29 22:09:48 +00:00
Sanjoy Das c3182d8c43 [TargetTransformInfo][NFCI] Add TargetTransformInfo::isZExtFree.
Summary:
This function is not used in this change but will be used in a
subsequent change.

Reviewers: mcrosier, chandlerc

Subscribers: llvm-commits

Differential Revision: http://reviews.llvm.org/D9180

llvm-svn: 243347
2015-07-27 23:27:43 +00:00
Mehdi Amini 5010ebf181 Make TargetTransformInfo keeping a reference to the Module DataLayout
DataLayout is no longer optional. It was initialized with or without
a DataLayout, and the DataLayout when supplied could have been the
one from the TargetMachine.

Summary:
This change is part of a series of commits dedicated to have a single
DataLayout during compilation by using always the one owned by the
module.

Reviewers: echristo

Subscribers: jholewinski, llvm-commits, rafael, yaron.keren

Differential Revision: http://reviews.llvm.org/D11021

From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 241774
2015-07-09 02:08:42 +00:00
Eric Christopher 4371b13937 Add a routine to TargetTransformInfo that will allow targets to look
at the attributes on a function to determine whether or not to allow
inlining.

llvm-svn: 241220
2015-07-02 01:11:47 +00:00
Hao Liu 32c0539691 [LoopVectorize] Teach Loop Vectorizor about interleaved memory accesses.
Interleaved memory accesses are grouped and vectorized into vector load/store and shufflevector.
E.g. for (i = 0; i < N; i+=2) {
       a = A[i];         // load of even element
       b = A[i+1];       // load of odd element
       ...               // operations on a, b, c, d
       A[i] = c;         // store of even element
       A[i+1] = d;       // store of odd element
     }

  The loads of even and odd elements are identified as an interleave load group, which will be transfered into vectorized IRs like:
     %wide.vec = load <8 x i32>, <8 x i32>* %ptr
     %vec.even = shufflevector <8 x i32> %wide.vec, <8 x i32> undef, <4 x i32> <i32 0, i32 2, i32 4, i32 6>
     %vec.odd = shufflevector <8 x i32> %wide.vec, <8 x i32> undef, <4 x i32> <i32 1, i32 3, i32 5, i32 7>

  The stores of even and odd elements are identified as an interleave store group, which will be transfered into vectorized IRs like:
     %interleaved.vec = shufflevector <4 x i32> %vec.even, %vec.odd, <8 x i32> <i32 0, i32 4, i32 1, i32 5, i32 2, i32 6, i32 3, i32 7> 
     store <8 x i32> %interleaved.vec, <8 x i32>* %ptr

This optimization is currently disabled by defaut. To try it by adding '-enable-interleaved-mem-accesses=true'. 

llvm-svn: 239291
2015-06-08 06:39:56 +00:00
Matt Arsenault e83379e8e4 Add isLegalAddressingMode address space argument to TTI
Update to match the TLI version, and remove the TLI version's
default argument.

llvm-svn: 239260
2015-06-07 20:12:03 +00:00
Wei Mi 062c74484d [X86] Disable loop unrolling in loop vectorization pass when VF is 1.
The patch disabled unrolling in loop vectorization pass when VF==1 on x86 architecture,
by setting MaxInterleaveFactor to 1. Unrolling in loop vectorization pass may introduce
the cost of overflow check, memory boundary check and extra prologue/epilogue code when
regular unroller will unroll the loop another time. Disable it when VF==1 remove the
unnecessary cost on x86. The same can be done for other platforms after verifying
interleaving/memory bound checking to be not perf critical on those platforms.

Differential Revision: http://reviews.llvm.org/D9515

llvm-svn: 236613
2015-05-06 17:12:25 +00:00
Jingyue Wu 5da831cc31 Divergence analysis for GPU programs
Summary:
Some optimizations such as jump threading and loop unswitching can negatively
affect performance when applied to divergent branches. The divergence analysis
added in this patch conservatively estimates which branches in a GPU program
can diverge. This information can then help LLVM to run certain optimizations
selectively.

Test Plan: test/Analysis/DivergenceAnalysis/NVPTX/diverge.ll

Reviewers: resistor, hfinkel, eliben, meheff, jholewinski

Subscribers: broune, bjarke.roune, madhur13490, tstellarAMD, dberlin, echristo, jholewinski, llvm-commits

Differential Revision: http://reviews.llvm.org/D8576

llvm-svn: 234567
2015-04-10 05:03:50 +00:00
Michael Zolotukhin 7ed84a8151 TTI: Add getCallInstrCost.
Review: http://reviews.llvm.org/D8094
llvm-svn: 232524
2015-03-17 19:26:23 +00:00
Olivier Sallenave 049d803ce0 Do not restrict interleaved unrolling to small loops, depending on the target.
llvm-svn: 231528
2015-03-06 23:12:04 +00:00
Mehdi Amini 46a43556db Make DataLayout Non-Optional in the Module
Summary:
DataLayout keeps the string used for its creation.

As a side effect it is no longer needed in the Module.
This is "almost" NFC, the string is no longer
canonicalized, you can't rely on two "equals" DataLayout
having the same string returned by getStringRepresentation().

Get rid of DataLayoutPass: the DataLayout is in the Module

The DataLayout is "per-module", let's enforce this by not
duplicating it more than necessary.
One more step toward non-optionality of the DataLayout in the
module.

Make DataLayout Non-Optional in the Module

Module->getDataLayout() will never returns nullptr anymore.

Reviewers: echristo

Subscribers: resistor, llvm-commits, jholewinski

Differential Revision: http://reviews.llvm.org/D7992

From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 231270
2015-03-04 18:43:29 +00:00
Chad Rosier 543900539f Prevent hoisting fmul from THEN/ELSE to IF if there is fmsub/fmadd opportunity.
This patch adds the isProfitableToHoist API.  For AArch64, we want to prevent a
fmul from being hoisted in cases where it is more profitable to form a
fmsub/fmadd.

Phabricator Review: http://reviews.llvm.org/D7299
Patch by Lawrence Hu <lawrence@codeaurora.org>

llvm-svn: 230241
2015-02-23 19:15:16 +00:00
Cameron Esfahani 17177d1e84 Value soft float calls as more expensive in the inliner.
Summary: When evaluating floating point instructions in the inliner, ask the TTI whether it is an expensive operation.  By default, it's not an expensive operation.  This keeps the default behavior the same as before.  The ARM TTI has been updated to return back TCC_Expensive for targets which don't have hardware floating point.

Reviewers: chandlerc, echristo

Reviewed By: echristo

Subscribers: t.p.northover, aemerson, llvm-commits

Differential Revision: http://reviews.llvm.org/D6936

llvm-svn: 228263
2015-02-05 02:09:33 +00:00
Chandler Carruth ab5cb36c40 [multiversion] Remove the function parameter from the unrolling
preferences interface on TTI now that all of TTI is per-function.

llvm-svn: 227741
2015-02-01 14:31:23 +00:00
Chandler Carruth 5ec2b1d11a [multiversion] Implement the old pass manager's TTI wrapper pass in
terms of the new pass manager's TargetIRAnalysis.

Yep, this is one of the nicer bits of the new pass manager's design.
Passes can in many cases operate in a vacuum and so we can just nest
things when convenient. This is particularly convenient here as I can
now consolidate all of the TargetMachine logic on this analysis.

The most important change here is that this pushes the function we need
TTI for all the way into the TargetMachine, and re-creates the TTI
object for each function rather than re-using it for each function.
We're now prepared to teach the targets to produce function-specific TTI
objects with specific subtargets cached, etc.

One piece of feedback I'd love here is whether its worth renaming any of
this stuff. None of the names really seem that awesome to me at this
point, but TargetTransformInfoWrapperPass is particularly ... odd.
TargetIRAnalysisWrapper might make more sense. I would want to do that
rename separately anyways, but let me know what you think.

llvm-svn: 227731
2015-02-01 12:26:09 +00:00
Chandler Carruth e038552c8a [PM] Port TTI to the new pass manager, introducing a TargetIRAnalysis to
produce it.

This adds a function to the TargetMachine that produces this analysis
via a callback for each function. This in turn faves the way to produce
a *different* TTI per-function with the correct subtarget cached.

I've also done the necessary wiring in the opt tool to thread the target
machine down and make it available to the pass registry so that we can
construct this analysis from a target machine when available.

llvm-svn: 227721
2015-02-01 10:11:22 +00:00
Chandler Carruth 93dcdc47db [PM] Switch the TargetMachine interface from accepting a pass manager
base which it adds a single analysis pass to, to instead return the type
erased TargetTransformInfo object constructed for that TargetMachine.

This removes all of the pass variants for TTI. There is now a single TTI
*pass* in the Analysis layer. All of the Analysis <-> Target
communication is through the TTI's type erased interface itself. While
the diff is large here, it is nothing more that code motion to make
types available in a header file for use in a different source file
within each target.

I've tried to keep all the doxygen comments and file boilerplate in line
with this move, but let me know if I missed anything.

With this in place, the next step to making TTI work with the new pass
manager is to introduce a really simple new-style analysis that produces
a TTI object via a callback into this routine on the target machine.
Once we have that, we'll have the building blocks necessary to accept
a function argument as well.

llvm-svn: 227685
2015-01-31 11:17:59 +00:00
Chandler Carruth 705b185f90 [PM] Change the core design of the TTI analysis to use a polymorphic
type erased interface and a single analysis pass rather than an
extremely complex analysis group.

The end result is that the TTI analysis can contain a type erased
implementation that supports the polymorphic TTI interface. We can build
one from a target-specific implementation or from a dummy one in the IR.

I've also factored all of the code into "mix-in"-able base classes,
including CRTP base classes to facilitate calling back up to the most
specialized form when delegating horizontally across the surface. These
aren't as clean as I would like and I'm planning to work on cleaning
some of this up, but I wanted to start by putting into the right form.

There are a number of reasons for this change, and this particular
design. The first and foremost reason is that an analysis group is
complete overkill, and the chaining delegation strategy was so opaque,
confusing, and high overhead that TTI was suffering greatly for it.
Several of the TTI functions had failed to be implemented in all places
because of the chaining-based delegation making there be no checking of
this. A few other functions were implemented with incorrect delegation.
The message to me was very clear working on this -- the delegation and
analysis group structure was too confusing to be useful here.

The other reason of course is that this is *much* more natural fit for
the new pass manager. This will lay the ground work for a type-erased
per-function info object that can look up the correct subtarget and even
cache it.

Yet another benefit is that this will significantly simplify the
interaction of the pass managers and the TargetMachine. See the future
work below.

The downside of this change is that it is very, very verbose. I'm going
to work to improve that, but it is somewhat an implementation necessity
in C++ to do type erasure. =/ I discussed this design really extensively
with Eric and Hal prior to going down this path, and afterward showed
them the result. No one was really thrilled with it, but there doesn't
seem to be a substantially better alternative. Using a base class and
virtual method dispatch would make the code much shorter, but as
discussed in the update to the programmer's manual and elsewhere,
a polymorphic interface feels like the more principled approach even if
this is perhaps the least compelling example of it. ;]

Ultimately, there is still a lot more to be done here, but this was the
huge chunk that I couldn't really split things out of because this was
the interface change to TTI. I've tried to minimize all the other parts
of this. The follow up work should include at least:

1) Improving the TargetMachine interface by having it directly return
   a TTI object. Because we have a non-pass object with value semantics
   and an internal type erasure mechanism, we can narrow the interface
   of the TargetMachine to *just* do what we need: build and return
   a TTI object that we can then insert into the pass pipeline.
2) Make the TTI object be fully specialized for a particular function.
   This will include splitting off a minimal form of it which is
   sufficient for the inliner and the old pass manager.
3) Add a new pass manager analysis which produces TTI objects from the
   target machine for each function. This may actually be done as part
   of #2 in order to use the new analysis to implement #2.
4) Work on narrowing the API between TTI and the targets so that it is
   easier to understand and less verbose to type erase.
5) Work on narrowing the API between TTI and its clients so that it is
   easier to understand and less verbose to forward.
6) Try to improve the CRTP-based delegation. I feel like this code is
   just a bit messy and exacerbating the complexity of implementing
   the TTI in each target.

Many thanks to Eric and Hal for their help here. I ended up blocked on
this somewhat more abruptly than I expected, and so I appreciate getting
it sorted out very quickly.

Differential Revision: http://reviews.llvm.org/D7293

llvm-svn: 227669
2015-01-31 03:43:40 +00:00
Chad Rosier f9327d6fe9 Commoning of target specific load/store intrinsics in Early CSE.
Phabricator revision: http://reviews.llvm.org/D7121
Patch by Sanjin Sijaric <ssijaric@codeaurora.org>!

llvm-svn: 227149
2015-01-26 22:51:15 +00:00
Elena Demikhovsky a3232f764e Implemented cost model for masked load/store operations.
llvm-svn: 227035
2015-01-25 08:44:46 +00:00