Defaulting to -Xclang -coverage-version='407*' makes .gcno/.gcda
compatible with gcov [4.7,8)
In addition, delete clang::CodeGenOptionsBase::CoverageExtraChecksum and GCOVOptions::UseCfgChecksum.
We can infer the information from the version.
With this change, .gcda files produced by `clang --coverage a.o` linked executable can be read by gcov 4.7~7.
We don't need other -Xclang -coverage* options.
There may be a mismatching version warning, though.
(Note, GCC r173147 "split checksum into cfg checksum and line checksum"
made gcov 4.7 incompatible with previous versions.)
I discovered that the limit on possible builtins managed by this
ObjCOrBuiltin variable is too low when combining large targets, since
aux-targets are appended to the targets list. A runtime assert exists
for this, however this patch creates a static-assert as well.
The logic for said static-assert is to make sure we have the room for
the aux-target and target to both be the largest list, which makes sure
we have room for all possible combinations.
I also incremented the number of bits by 1, since I discovered this
currently broken. The current bit-count was 36, so this doesn't
increase any size.
Neither gcc or icc support this. Split out from D79472. I want
to remove more, but it looks like icc does support some things
gcc doesn't and I need to double check our internal test suites.
Y is the start of several 2 letter constraints, but we also had
partial support to recognize it by itself. But it doesn't look
like it can get through clang as a single letter so the backend
support for this was effectively dead.
This is the result of an audit of all of the ABIs in clang to implement
and enable the type for those targets.
Additionally, this finds an issue with integer-promotion passing for a
few platforms when using _ExtInt of < int, so this also corrects that
resulting in signext/zeroext being on a params of those types in some
platforms.
Differential Revisions: https://reviews.llvm.org/D79118
gcc supports selecting ymm0/zmm0 for the Yz constraint when used with 256 or 512 bit vector types.
Fixes PR45806
Differential Revision: https://reviews.llvm.org/D79448
Since the _ExtInt type got into the repo, we've discovered that the ABI
implications weren't completely understood. The other architectures are
going to be audited (see D79118), however downstream targets aren't
going to benefit from this audit.
This patch disables the _ExtInt type by default and makes the
target-info an opt-in. As it is audited, I'll re-enable these for all
of our default targets.
While we don't support 32-bit architectures in Fuchsia, these are needed
in the early boot phase on x86, so we build just these to satisfy that
use case.
Differential Revision: https://reviews.llvm.org/D78687
This patch upstreams support for the Armv8.6-a Matrix Multiplication
Extension. A summary of the features can be found here:
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/arm-architecture-developments-armv8-6-a
This patch includes:
- Assembly support for AArch32
- Intrinsics Support for AArch32 Neon Intrinsics for Matrix
Multiplication
Note: these extensions are optional in the 8.6a architecture and so have
to be enabled by default
No additional IR types or C Types are needed for this extension.
This is part of a patch series, starting with BFloat16 support and
the other components in the armv8.6a extension (in previous patches
linked in phabricator)
Based on work by:
- Luke Geeson
- Oliver Stannard
- Luke Cheeseman
Reviewers: t.p.northover, miyuki
Reviewed By: miyuki
Subscribers: miyuki, ostannard, kristof.beyls, hiraditya, danielkiss,
cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D77872
This patch upstreams support for the Armv8.6-a Matrix Multiplication
Extension. A summary of the features can be found here:
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/arm-architecture-developments-armv8-6-a
This patch includes:
- Assembly support for AArch64 only (no SVE or Neon)
- Intrinsics Support for AArch64 Armv8.6a Matrix Multiplication Instructions (No bfloat16 matrix multiplication)
No IR types or C Types are needed for this extension.
This is part of a patch series, starting with BFloat16 support and
the other components in the armv8.6a extension (in previous patches
linked in phabricator)
Based on work by:
- Luke Geeson
- Oliver Stannard
- Luke Cheeseman
Reviewers: ostannard, t.p.northover, rengolin, kmclaughlin
Reviewed By: kmclaughlin
Subscribers: kmclaughlin, kristof.beyls, hiraditya, danielkiss,
cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D77871
Summary:
Macro argument expansion logic relies on skipping file IDs that created
as a result of an include. Unfortunately it fails to do that for
predefined buffer since it doesn't have a valid insertion location.
As a result of that any file ID created for an include inside the
predefined buffers breaks the traversal logic in
SourceManager::computeMacroArgsCache.
To fix this issue we first record number of created FIDs for predefined
buffer, and then skip them explicitly in source manager.
Another solution would be to just give predefined buffers a valid source
location, but it is unclear where that should be..
Reviewers: sammccall
Subscribers: cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D78649
whether they have missing header files.
Whether a module's headers happen to be present on the local file system
should make no difference to whether we make its contents visible when
importing another module that re-exports it. If we have an up-to-date
AST file that we can load, that's all that matters.
This fixes the ability to header syntax checking for modular headers in
C++20 mode (or in prior modes where -fmodules-local-submodule-visibility
is enabled but -fmodules is not).
modules too.
This more accurately reflects the semantics of this flag, as distinct
from "IsAvailable", which (in an explicit modules world) only describes
whether a module is buildable, not whether it's importable.
This is needed to fix the reason
0a2be46cfd (Modules: Invalidate out-of-date PCMs as they're
discovered) and 5b44a4b07fc1d ([modules] Do not cache invalid state for
modules that we attempted to load.) were reverted.
These patches changed Clang to use `isVolatile` when loading modules.
This had the side effect of not using mmap when loading modules, and
thus greatly increased memory usage.
The reason it wasn't using mmap is because `MemoryBuffer` plays some
games with file size when you request null termination, and it has to
disable these when `isVolatile` is set as the size may change by the
time it's mmapped. Clang by default passes
`RequiresNullTerminator = true`, and `shouldUseMmap` ignored if
`RequiresNullTerminator` was even requested.
This patch adds `RequiresNullTerminator` to the `FileManager` interface
so Clang can use it when loading modules, and changes `shouldUseMmap` to
only take volatility into account if `RequiresNullTerminator` is true.
This is fine as both `mmap` and a `read` loop are vulnerable to
modifying the file while reading, but are immune to the rename Clang
does when replacing a module file.
Differential Revision: https://reviews.llvm.org/D77772
This symbol is defined in avr-gcc. Because AVR normally uses the ELF
format, define the symbol unconditionally.
This patch is needed to get Clang to compile compiler-rt.
Differential Revision: https://reviews.llvm.org/D78117
Generate PTX using newer versions of PTX and allow using sm_80 with CUDA-11.
None of the new features of CUDA-10.2+ have been implemented yet, so using these
versions will still produce a warning.
Differential Revision: https://reviews.llvm.org/D77670
Instead of hardcoding individual GPU mappings in multiple functions, keep them
all in one table and use it to look up the mappings.
We also don't care about 'virtual' architecture much, so the API is trimmed down
down to a simpler GPU->Virtual arch name lookup.
Differential Revision: https://reviews.llvm.org/D77665
Move the listing of allowed clauses per OpenMP directive to the new
macro file in `llvm/Frontend/OpenMP`. Also, use a single generic macro
that specifies the directive and one allowed clause explicitly instead
of a dedicated macro per directive.
We save 800 loc and boilerplate for all new directives/clauses with no
functional change. We also need to include the macro file only once and
not once per directive.
Depends on D77112.
Reviewed By: JonChesterfield
Differential Revision: https://reviews.llvm.org/D77113
This is a cleanup and normalization patch that also enables reuse with
Flang later on. A follow up will clean up and move the directive ->
clauses mapping.
Reviewed By: fghanim
Differential Revision: https://reviews.llvm.org/D77112
Summary:
- `RegisterVar` has `void` return type and `size_t` in its variable size
parameter in HIP or CUDA 9.0+.
Reviewers: tra, yaxunl
Subscribers: cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D77398
Summary:
As defined by Arm C Language Extensions (ACLE) these macro defines
should be set to specific values depending on -mbranch-protection.
Reviewers: chill
Reviewed By: chill
Subscribers: danielkiss, cfe-commits, kristof.beyls
Tags: #clang
Differential Revision: https://reviews.llvm.org/D77134
This is a cleanup and normalization patch that also enables reuse with
Flang later on. A follow up will clean up and move the directive ->
clauses mapping.
Differential Revision: https://reviews.llvm.org/D77112
This API is used by LLDB to attach owning module information to
Declarations deserialized from DWARF.
Differential Revision: https://reviews.llvm.org/D75561
Currently, bpf does not specify 128bit alignment in its
layout spec. So for a structure like
struct ipv6_key_t {
unsigned pid;
unsigned __int128 saddr;
unsigned short lport;
};
clang will generate IR type
%struct.ipv6_key_t = type { i32, [12 x i8], i128, i16, [14 x i8] }
Additional padding is to ensure later IR->MIR can generate correct
stack layout with target layout spec.
But it is common practice for a tracing program to be
first compiled with target flag (e.g., x86_64 or aarch64) through
clang to generate IR and then go through llc to generate bpf
byte code. Tracing program often refers to kernel internal
data structures which needs to be compiled with non-bpf target.
But such a compilation model may cause a problem on aarch64.
The bcc issue https://github.com/iovisor/bcc/issues/2827
reported such a problem.
For the above structure, since aarch64 has "i128:128" in its
layout string, the generated IR will have
%struct.ipv6_key_t = type { i32, i128, i16 }
Since bpf does not have "i128:128" in its spec string,
the selectionDAG assumes alignment 8 for i128 and
computes the stack storage size for the above is 32 bytes,
which leads incorrect code later.
The x86_64 does not have this issue as it does not have
"i128:128" in its layout spec as it does permits i128 to
be alignmented at 8 bytes at stack. Its IR type looks like
%struct.ipv6_key_t = type { i32, [12 x i8], i128, i16, [14 x i8] }
The fix here is add i128 support in layout spec, the same as
aarch64. The only downside is we may have less optimal stack
allocation in certain cases since we require 16byte alignment
for i128 instead of 8. But this is probably fine as i128 is
not used widely and in most cases users should already
have proper alignment.
Differential Revision: https://reviews.llvm.org/D76587
The main purpose of introducing these builtins is to add a range
metadata [1, 1025) on the work group size loaded from dispatch
ptr, which cannot be done by source code.
Differential Revision: https://reviews.llvm.org/D76772
This is the first part extracted from D71179 and cleaned up.
This patch provides parsing support for `omp begin/end declare variant`,
as defined in OpenMP technical report 8 (TR8) [0].
A major purpose of this patch is to provide proper math.h/cmath support
for OpenMP target offloading. See PR42061, PR42798, PR42799. The current
code was developed with this feature in mind, see [1].
[0] https://www.openmp.org/wp-content/uploads/openmp-TR8.pdf
[1] https://reviews.llvm.org/D61399#change-496lQkg0mhRN
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D74941
Summary:
This patch introduces command-line support for the Armv8.6-a architecture and assembly support for BFloat16. Details can be found
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/arm-architecture-developments-armv8-6-a
in addition to the GCC patch for the 8..6-a CLI:
https://gcc.gnu.org/legacy-ml/gcc-patches/2019-11/msg02647.html
In detail this patch
- march options for armv8.6-a
- BFloat16 assembly
This is part of a patch series, starting with command-line and Bfloat16
assembly support. The subsequent patches will upstream intrinsics
support for BFloat16, followed by Matrix Multiplication and the
remaining Virtualization features of the armv8.6-a architecture.
Based on work by:
- labrinea
- MarkMurrayARM
- Luke Cheeseman
- Javed Asbar
- Mikhail Maltsev
- Luke Geeson
Reviewers: SjoerdMeijer, craig.topper, rjmccall, jfb, LukeGeeson
Reviewed By: SjoerdMeijer
Subscribers: stuij, kristof.beyls, hiraditya, dexonsmith, danielkiss, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D76062
Summary:
This patch adds a virtual method `getCPUCacheLineSize()` to `TargetInfo`. Currently, I've only implemented the method in `X86TargetInfo`. It's extremely important that each CPU's cache line size correct (e.g., we can't just define it as `64` across the board) so, it has been a little slow getting to this point.
I'll work on the ARM CPUs next, but that will probably come later in a different patch.
Tags: #clang
Differential Revision: https://reviews.llvm.org/D74918
Currently square-bracket-style (CXX11/C2X) attribute names are normalised to
start with :: if they don't have a namespace. This is a bit odd, as such
names are rejected when parsing, so don't do this.
Differential Revision: https://reviews.llvm.org/D76704