Move all variables at file-scope or function-static-scope into a hosting structure (lld::CommonLinkerContext) that lives at lldMain()-scope. Drivers will inherit from this structure and add their own global state, in the same way as for the existing COFFLinkerContext.
See discussion in https://lists.llvm.org/pipermail/llvm-dev/2021-June/151184.html
Differential Revision: https://reviews.llvm.org/D108850
Original commit description:
[LLD] Remove global state in lld/COFF
This patch removes globals from the lldCOFF library, by moving globals
into a context class (COFFLinkingContext) and passing it around wherever
it's needed.
See https://lists.llvm.org/pipermail/llvm-dev/2021-June/151184.html for
context about removing globals from LLD.
I also haven't moved the `driver` or `config` variables yet.
Differential Revision: https://reviews.llvm.org/D109634
This reverts commit a2fd05ada9.
Original commits were b4fa71eed3
and e03c7e367a.
This patch removes globals from the lldCOFF library, by moving globals
into a context class (COFFLinkingContext) and passing it around wherever
it's needed.
See https://lists.llvm.org/pipermail/llvm-dev/2021-June/151184.html for
context about removing globals from LLD.
I also haven't moved the `driver` or `config` variables yet.
Differential Revision: https://reviews.llvm.org/D109634
The following class isn't part of the export table; there's a
second correctly placed comment about the things that actually
belong to the export table.
As this isn't handled as a regular relocation, the normal handling of
maybeReportRelocationToDiscarded in Chunks.cpp doesn't apply here.
This would have caught the issue fixed by
82de4e0753.
Differential Revision: https://reviews.llvm.org/D102115
This patch adds support for creating Guard Address-Taken IAT Entry Tables (.giats$y sections) in object files, matching the behavior of MSVC. These contain lists of address-taken imported functions, which are used by the linker to create the final GIATS table.
Additionally, if any DLLs are delay-loaded, the linker must look through the .giats tables and add the respective load thunks of address-taken imports to the GFIDS table, as these are also valid call targets.
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D87544
This broke both Firefox and Chromium (PR47905) due to what seems like dllimport
function not being handled correctly.
> This patch adds support for creating Guard Address-Taken IAT Entry Tables (.giats$y sections) in object files, matching the behavior of MSVC. These contain lists of address-taken imported functions, which are used by the linker to create the final GIATS table.
> Additionally, if any DLLs are delay-loaded, the linker must look through the .giats tables and add the respective load thunks of address-taken imports to the GFIDS table, as these are also valid call targets.
>
> Reviewed By: rnk
>
> Differential Revision: https://reviews.llvm.org/D87544
This reverts commit cfd8481da1.
This patch adds support for creating Guard Address-Taken IAT Entry Tables (.giats$y sections) in object files, matching the behavior of MSVC. These contain lists of address-taken imported functions, which are used by the linker to create the final GIATS table.
Additionally, if any DLLs are delay-loaded, the linker must look through the .giats tables and add the respective load thunks of address-taken imports to the GFIDS table, as these are also valid call targets.
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D87544
This patch adds support for creating Guard Address-Taken IAT Entry Tables (.giats$y sections) in object files, matching the behavior of MSVC. These contain lists of address-taken imported functions, which are used by the linker to create the final GIATS table.
Additionally, if any DLLs are delay-loaded, the linker must look through the .giats tables and add the respective load thunks of address-taken imports to the GFIDS table, as these are also valid call targets.
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D87544
The alignment of ARM64 range extension thunks was fixed in
7c81649219, but ARM range extension thunks, and import
and delay import thunks also need aligning (like all code on ARM
platforms).
I'm adding a test for alignment of ARM64 import thunks - not
specifically adding tests for misalignment of all of them though.
Differential Revision: https://reviews.llvm.org/D77796
E.g. for x86_64, previously each symbol's thunk was 87 bytes. Now
there's a 12 byte thunk per symbol, plus a shared 83 byte tail
function.
This is similar to what both MS link.exe and GNU tools do for
delay imports.
Differential Revision: https://reviews.llvm.org/D64288
llvm-svn: 365823
This patch does the same thing as r365595 to other subdirectories,
which completes the naming style change for the entire lld directory.
With this, the naming style conversion is complete for lld.
Differential Revision: https://reviews.llvm.org/D64473
llvm-svn: 365730
Shaves another pointer off of SectionChunk, reducing the size from 96 to
88 bytes, down from 144 before I started working on this. Combined with
D62356, this reduced peak memory usage when linking chrome_child.dll
from 713MB to 675MB, or 5%.
Create NonSectionChunk to provide virtual dispatch to the rest of the
chunk types.
Reviewers: ruiu, aganea
Differential Revision: https://reviews.llvm.org/D62362
llvm-svn: 361667
The previous patch lost the call to PowerOf2Ceil, which causes LLD to
crash when handling common symbols with a non-power-of-2 size. I tweaked
the existing common.test to make the bsspad16 common symbol be 15 bytes
to add coverage for this case.
llvm-svn: 361426
Summary:
Valid section or chunk alignments are powers of 2 in the range [1,
8192]. These can be stored more canonically in log2 form to free up some
bits in Chunk. Combined with D61696, SectionChunk gets 8 bytes smaller.
Reviewers: ruiu, aganea
Subscribers: llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D61698
llvm-svn: 361206
Summary:
Prior to this change, every implementation of writeTo would add
OutputSectionOff to the output section buffer start before writing data.
Instead, do this math in the caller, so that it can be written once
instead of many times.
The output section offset is always equivalent to the difference between
the chunk RVA and the output section RVA, so we can replace the one
remaining usage of OutputSectionOff with that subtraction.
This doesn't change the size of SectionChunk because of alignment
requirements, but I will rearrange the fields in a follow-up change to
accomplish that.
Reviewers: ruiu, aganea
Subscribers: llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D61696
llvm-svn: 360376
Previously, we assumed that .rdata is zero-filled, so when writing
an COFF import table, we didn't write anything if the data is zero.
That assumption was wrong because .rdata can be merged with .text.
If .rdata is merged with .text, they are initialized with 0xcc which
is a trap instruction.
This patch removes that assumption from code.
Should be merged to 8.0 branch as this is a regression.
Fixes https://bugs.llvm.org/show_bug.cgi?id=39826
Differential Revision: https://reviews.llvm.org/D57168
llvm-svn: 352082
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
We initialize .text section with 0xcc (INT3 instruction), so we need to
explicitly write data even if it is zero if it can be in a .text section.
If you specify /merge:.rdata=.text, .rdata (which contains .idata) is put
to .text, so we need to do this.
Fixes https://bugs.llvm.org/show_bug.cgi?id=39826
Differential Revision: https://reviews.llvm.org/D55098
llvm-svn: 348000
GNU binutils import libraries aren't the same kind of short import
libraries as link.exe and LLD produce, but are a plain static library
containing .idata section chunks. MSVC link.exe can successfully link
to them.
In order for imports from GNU import libraries to mix properly with the
normal import chunks, the chunks from the existing mechanism needs to
be added into named sections like .idata$2.
These GNU import libraries consist of one header object, a number of
object files, one for each imported function/variable, and one trailer.
Within the import libraries, the object files are ordered alphabetically
in this order. The chunks stemming from these libraries have to be
grouped by what library they originate from and sorted, to make sure
the section chunks for headers and trailers for the lists are ordered
as intended. This is done on all sections named .idata$*, before adding
the synthesized chunks to them.
Differential Revision: https://reviews.llvm.org/D38513
llvm-svn: 342777
The profailing style in lld seem to be to not include such empty lines.
Clang-tidy/clang-format seem to handle this just fine.
Differential Revision: https://reviews.llvm.org/D43528
llvm-svn: 325629
The same adjustment is already done for the entry point in
Writer.cpp and for relocations that point to executable code
in Chunks.cpp.
Differential Revision: https://reviews.llvm.org/D35767
llvm-svn: 308953
This fixes cases on ARM64 when importing from more than one DLL,
in case the imports from the first DLL ended up unaligned.
When fixing up a IMAGE_REL_ARM64_PAGEOFFSET_12L, which shifts the
offset by the load/store size, check that the shift doesn't discard
any bits. (This would also detect if the import address chunks were
unaligned.)
Differential revision: https://reviews.llvm.org/D35640
llvm-svn: 308585
Previously, LLD-produced executables had IAT (Import Address Table) and
ILT (Import Lookup Table) as separate chunks of data, although their
contents are identical. My interpretation of the COFF spec when I wrote
the COFF linker is that they need to be separate tables even though they
are the same.
But Peter found that the Windows loader is fine with executables in
which IAT and ILT are merged. This is a patch to merge IAT and ILT.
I confirmed that an lld-link self-hosted with this patch works fine.
Fixes https://bugs.llvm.org/show_bug.cgi?id=33064
Differential Revision: https://reviews.llvm.org/D33326
llvm-svn: 303374
The import lists are already binned by DLL name, so there's no need to
deduplicate here.
Differential Revision: https://reviews.llvm.org/D33330
llvm-svn: 303371
We've been using make<> to allocate new objects in ELF. We have
the same function in COFF, but we didn't use it widely due to
negligence. This patch uses the function in COFF to close the gap
between ELF and COFF.
llvm-svn: 303357
This ports the ELF linker's symbol table design, introduced in r268178,
to the COFF linker.
Differential Revision: http://reviews.llvm.org/D21166
llvm-svn: 289280
DLL export tables usually contain dllexport'ed symbol RVAs so that
applications which use the DLLs can find symbols from the DLLs.
However, there's a minor feature to "forward" DLL symbols to other
DLLs.
If you set an RVA to a string whose form is "<dllname>.<symbolname>"
(e.g. "KERNEL32.ExitProcess") instead of symbol RVA to the export
table, the loader interprets that as a forwarder symbol, and resolve
that symbol from the specified DLL.
This patch implements that feature.
llvm-svn: 257243
This patch fixes a subtle incompatibility with MSVC linker.
MSVC linker preserves the original spelling of a DLL in the
import descriptor table. LLD previously converted all
characters to lowercase. Usually this difference is benign,
but if a program explicitly checks for DLL file names, the
program could fail.
llvm-svn: 246620
The rules for dllexported symbols are overly complicated due to
x86 name decoration, fuzzy symbol resolution, and the fact that
one symbol can be resolved by so many different names. The rules
are probably intended to be "intuitive", so that users don't have
to understand the name mangling schemes, but it seems that it can
lead to unintended symbol exports.
To make it clear what I'm trying to do with this patch, let me
write how the export rules are subtle and complicated.
- x86 name decoration: If machine type is i386 and export name
is given by a command line option, like /export:foo, the
real symbol name the linker has to search for is _foo because
all symbols are decorated with "_" prefixes. This doesn't happen
on non-x86 machines. This automatic name decoration happens only
when the name is not C++ mangled.
However, the symbol name exported from DLLs are ones without "_"
on all platforms.
Moreover, if the option is given via .drectve section, no
symbol decoration is done (the reason being that the .drectve
section is created by a compiler and the compiler should always
know the exact name of the symbol, I guess).
- Fuzzy symbol resolution: In addition to x86 name decoration,
the linker has to look for cdecl or C++ mangled symbols
for a given /export. For example, it searches for not only
_foo but also _foo@<number> or ??foo@... for /export:foo.
Previous implementation didn't get it right. I'm trying to make
it as compatible with MSVC linker as possible with this patch
however the rules are. The new code looks a bit messy to me, but
I don't think it can be simpler due to the ad-hoc-ness of the rules.
llvm-svn: 246424
There are some DLLs whose initializers depends on other DLLs'
initializers. The initialization order matters for them.
MSVC linker uses the order of the libraries from the command line.
LLD used ASCII-betical order. So they were incompatible.
This patch makes LLD compatible with MSVC.
llvm-svn: 245201
This is more convenient than the offset from the start of the file as we
don't have to worry about it changing when we move the output section.
This is a port of r245008 from ELF.
llvm-svn: 245018