argument in strncat.
The warning is ignored by default since it needs more qualification.
TODO: The warning message and the note are messy when
strncat is a builtin due to the macro expansion.
llvm-svn: 149524
cleans up and improves a few things:
- We get rid of the ugly dance of computing all of the captures in
data structures that clone those of CapturingScopeInfo, centralizing
the logic for accessing/updating these data structures
- We re-use the existing capture logic for 'this', which actually
works now.
Cleaned up some diagnostic wording in minor ways as well.
llvm-svn: 149516
And remove HAVE_CLANG_CONFIG_H, now that the header is generated
in the autoconf build, too. (clang r149497 / llvm r149498)
Also include the config.h header after all other headers, per
the LLVM coding standards.
It also turns out WindowsToolChain.cpp wasn't using the config
header at all, so that include's just deleted now.
llvm-svn: 149504
This is a mess. According to the C++11 standard, pointer subtraction only has
undefined behavior if the difference of the array indices does not fit into a
ptrdiff_t.
However, common implementations effectively perform a char* subtraction first,
and then divide the result by the element size, which can cause overflows in
some cases. Those cases are not considered to be undefined behavior by this
change; perhaps they should be.
llvm-svn: 149490
The purpose of refactoring is to hide operand roles from SwitchInst user (programmer). If you want to play with operands directly, probably you will need lower level methods than SwitchInst ones (TerminatorInst or may be User). After this patch we can reorganize SwitchInst operands and successors as we want.
What was done:
1. Changed semantics of index inside the getCaseValue method:
getCaseValue(0) means "get first case", not a condition. Use getCondition() if you want to resolve the condition. I propose don't mix SwitchInst case indexing with low level indexing (TI successors indexing, User's operands indexing), since it may be dangerous.
2. By the same reason findCaseValue(ConstantInt*) returns actual number of case value. 0 means first case, not default. If there is no case with given value, ErrorIndex will returned.
3. Added getCaseSuccessor method. I propose to avoid usage of TerminatorInst::getSuccessor if you want to resolve case successor BB. Use getCaseSuccessor instead, since internal SwitchInst organization of operands/successors is hidden and may be changed in any moment.
4. Added resolveSuccessorIndex and resolveCaseIndex. The main purpose of these methods is to see how case successors are really mapped in TerminatorInst.
4.1 "resolveSuccessorIndex" was created if you need to level down from SwitchInst to TerminatorInst. It returns TerminatorInst's successor index for given case successor.
4.2 "resolveCaseIndex" converts low level successors index to case index that curresponds to the given successor.
Note: There are also related compatability fix patches for dragonegg, klee, llvm-gcc-4.0, llvm-gcc-4.2, safecode, clang.
llvm-svn: 149482
commit 149470. This fixes test/CodeGen/PR3589-freestanding-libcalls.c.
Original log:
ConstantArray::get() (for strings) is going away, use
ConstantDataArray::getString instead.
Many instances of ConstantArray::get() could be moved to
use more efficient ConstantDataArray methods that avoid a ton
of intermediate Constant*'s for each element (e.g.
GetConstantArrayFromStringLiteral). I don't plan on doing this
in the short-term though.
llvm-svn: 149477
- Actually building the var -> capture mapping properly (there was an off-by-one error)
- Keeping track of the source location of each capture
- Minor QoI improvements, e.g, highlighing the prior capture if
there are multiple captures, pointing at the variable declaration we
found if we reject it.
As part of this, add standard citations for the various semantic
checks we perform, and note where we're not performing those checks as
we should.
llvm-svn: 149462
CFBridgingRetain/CFBridgingRelease calls instead
of __bridge_retained/__bridge_transfer casts as preferred
way of moving cf objects to arc land. // rdar://10207950
llvm-svn: 149449
builds, and bring mm_alloc.h into the fold. Start playing some tricks
with these builtin modules to mirror the include_next tricks that the
headers already perform.
llvm-svn: 149434
The Darwin toolchain constructor was assuming that all Darwin triples would
have an OS string starting with "darwin". Triples starting with "macosx"
would misinterpret the version number, and "ios" triples would completely
miss the version number (or worse) because the OS name is not 6 characters
long. We lose some sanity checking of triple strings here, since the
Triple.getOSVersion function doesn't do all the checking that the previous
code did, but this still seems like a step in the right direction.
llvm-svn: 149422
__has_builtin
in an empty file, as we were overwriting the EOF token. Overwriting an arbitrary token
never seems like a good idea in the error case. This fixes a bug reported on the GCC
list :)
llvm-svn: 149397
This fixes the case where Clang would output:
error: format specifies type 'wchar_t *' (aka 'wchar_t *')
ArgTypeResult::getRepresentativeTypeName needs to take into account
that wchar_t can be a built-in type (as opposed to in C, where it is a
typedef).
llvm-svn: 149387
ConstantDataArray::getString instead.
Many instances of ConstantArray::get() could be moved to
use more efficient ConstantDataArray methods that avoid a ton
of intermediate Constant*'s for each element (e.g.
GetConstantArrayFromStringLiteral). I don't plan on doing this
in the short-term though.
llvm-svn: 149363
Original log:
Convert ProgramStateRef to a smart pointer for managing the reference counts of ProgramStates. This leads to a slight memory
improvement, and a simplification of the logic for managing ProgramState objects.
# Please enter the commit message for your changes. Lines starting
llvm-svn: 149339
driver based on discussions with Doug Gregor. There are several issues:
1) The patch was not reviewed prior to commit and there were review comments.
2) The design of the functionality (triple-prefixed tool invocation)
isn't the design we want for Clang going forward: it focuses on the
"user triple" rather than on the "toolchain triple", and forces that
bit of state into the API of every single toolchain instead of
handling it automatically in the common base classes.
3) The tests provided are not stable. They fail on a few Linux variants
(Gentoo among them) and on mingw32 and some other environments.
I *am* interested in the Clang driver being able to invoke
triple-prefixed tools, but we need to design that feature the right way.
This patch just extends the previous hack without fixing the underlying
problems with it. I'm working on a new design for this that I will mail
for review by tomorrow.
I am aware that this removes functionality that NetBSD relies on, but
this is ToT, not a release. This functionality hasn't been properly
designed, implemented, and tested yet. We can't "regress" until we get
something that really works, both with the immediate use cases and with
long term maintenance of the Clang driver.
For reference, the original commit log:
Keep track of the original target the user specified before
normalization. This used to be captured in DefaultTargetTriple and is
used for the (optional) $triple-$tool lookup for cross-compilation.
Do this properly by making it an attribute of the toolchain and use it
in combination with the computed triple as index for the toolchain
lookup.
llvm-svn: 149337
Original log:
Convert ProgramStateRef to a smart pointer for managing the reference counts of ProgramStates. This leads to a slight memory
improvement, and a simplification of the logic for managing ProgramState objects.
llvm-svn: 149336
consume one or more of their arguments. If not done, this will cause a leak
as method will not consume the argument when receiver is null.
In this patch, the null path releases consumed argument.
// rdar://10444474
llvm-svn: 149279
This is to prevent diagnostic when using NSLocalizedString or CFCopyLocalizedString
macros which are usually used in place of NS and CF strings literals.
llvm-svn: 149268
mangling of floating-point literals. I just went ahead and
reimplemented toString() here; if someone wants to generalize
the library routine to do this, or feels strongly that we should
be post-processing, please feel free.
llvm-svn: 149256
- Remove the printf0 special handling as we treat it as printf anyway.
- Perform basic checks (non-literal, empty) for all formats and not only printf/scanf.
llvm-svn: 149236
each of the targets. Use this for module requirements, so that we can
pin the availability of certain modules to certain target features,
e.g., provide a module for xmmintrin.h only when SSE support is
available.
Use these feature names to provide a nearly-complete module map for
Clang's built-in headers. Only mm_alloc.h and unwind.h are missing,
and those two are fairly specialized at the moment. Finishes
<rdar://problem/10710060>.
llvm-svn: 149227
headers. The remaining headers require more sophisticated
requirements; they'll be handled separately. Part of
<rdar://problem/10710060>.
llvm-svn: 149206
for getting the name of the module file, unifying the code for
searching for a module with a given name (into lookupModule()) and
separating out the mapping to a module file (into
getModuleFileName()). No functionality change.
llvm-svn: 149197
like Darwin that don't support it. We should also complain about
invalid -fvisibility=protected, but that information doesn't seem
to exist at the most appropriate time, so I've left a FIXME behind.
llvm-svn: 149186
consume one or more of their arguments. If not done, this will cause a leak
as method will not consume the argument when receiver is null.
// rdar://10444474
llvm-svn: 149184
single attribute ("system") that allows us to mark a module as being a
"system" module. Each of the headers that makes up a system module is
considered to be a system header, so that we (for example) suppress
warnings there.
If a module is being inferred for a framework, and that framework
directory is within a system frameworks directory, infer it as a
system framework.
llvm-svn: 149143
-Wno-everything remap all warnings to ignored.
We can now use "-Wno-everything -W<warning>" to ignore all warnings except
specific ones.
llvm-svn: 149121
the direct serialization of the linked-list structure. Instead, use a
scheme similar to how we handle redeclarations, with redeclaration
lists on the side. This addresses several issues:
- In cases involving mixing and matching of many categories across
many modules, the linked-list structure would not be consistent
across different modules, and categories would get lost.
- If a module is loaded after the class definition and its other
categories have already been loaded, we wouldn't see any categories
in the newly-loaded module.
llvm-svn: 149112
function definition can produce a constant expression. This also provides the
last few checks for [dcl.constexpr]p3 and [dcl.constexpr]p4.
llvm-svn: 149108
the recent refactoring. All interesting NetBSD release have a GNU as
version on i386 that supports --32, so don't bother with the conditional
setting of it.
llvm-svn: 149087
ARM supports clz and ctz directly and both operations have well-defined
results for zero. There is no disadvantage in performance to using the
defined-at-zero versions of llvm.ctlz/cttz intrinsics. We're running into
ARM-specific code written with the assumption that __builtin_clz(0) == 32,
even though that value is technically undefined. The code is failing now
because of llvm optimizations that are taking advantage of the undef
behavior (specifically svn r147255). There's nothing wrong with that
optimization on x86 where any incorrect assumptions about __builtin_clz(0)
will quickly be exposed. For ARM, though, optimizations based on that undef
behavior are likely to cause subtle bugs. Other targets with defined-at-zero
clz/ctz support may want to override the default behavior as well.
llvm-svn: 149086
normalization. This used to be captured in DefaultTargetTriple and is
used for the (optional) $triple-$tool lookup for cross-compilation.
Do this properly by making it an attribute of the toolchain and use it
in combination with the computed triple as index for the toolchain
lookup.
llvm-svn: 149083
At this point this is largely cosmetic, but it opens the door to replace
ProgramStateRef with a smart pointer that more eagerly acts in the role
of reclaiming unused ProgramState objects.
llvm-svn: 149081
leaves "finalize' behind and in arc mode, does not
include it. This allows the migrated source to be compiled
in both gc and arc mode. // rdar://10532441
llvm-svn: 149079
declarator just because we were able to build an invalid decl
for it. The invalid-type diagnostics, in particular, are still useful
to know, and may indicate something about why the decl is invalid.
Also, recover from an illegal pointer/reference-to-unqualified-retainable
type using __strong instead of __autoreleasing; in general, a random
object is much more likely to be __strong, so this avoids unnecessary
cascading errors in the most common case.
llvm-svn: 149074
provide the layout of records, rather than letting Clang compute
the layout itself. LLDB provides the motivation for this feature:
because various layout-altering attributes (packed, aligned, etc.)
don't get reliably get placed into DWARF, the record layouts computed
by LLDB from the reconstructed records differ from the actual layouts,
and badness occurs. This interface lets the DWARF data drive layout,
so we don't need the attributes preserved to get the answer write.
The testing methodology for this change is fun. I've introduced a
variant of -fdump-record-layouts called -fdump-record-layouts-simple
that always has the simple C format and provides size/alignment/field
offsets. There is also a -cc1 option -foverride-record-layout=<file>
to take the output of -fdump-record-layouts-simple and parse it to
produce a set of overridden layouts, which is introduced into the AST
via a testing-only ExternalASTSource (called
LayoutOverrideSource). Each test contains a number of records to lay
out, which use various layout-changing attributes, and then dumps the
layouts. We then run the test again, using the preprocessor to
eliminate the layout-changing attributes entirely (which would give us
different layouts for the records), but supplying the
previously-computed record layouts. Finally, we diff the layouts
produced from the two runs to be sure that they are identical.
Note that this code makes the assumption that we don't *have* to
provide the offsets of bases or virtual bases to get the layout right,
because the alignment attributes don't affect it. I believe this
assumption holds, but if it does not, we can extend
LayoutOverrideSource to also provide base offset information.
Fixes the Clang side of <rdar://problem/10169539>.
llvm-svn: 149055
the gdb testsuite complains too much about the ordering of items printed,
even if the offsets in the debug info are correct.
This reverts commit 027cb30af828f07750f9185782822297a5c57231.
llvm-svn: 149049
-fixit-recompile
applies fixits and recompiles the result
-fixit-to-temporary
applies fixits to temporary files
-fix-only-warnings">,
applies fixits for warnings only, not errors
Combining "-fixit-recompile -fixit-to-temporary" allows testing the result of fixits
without touching the original sources.
llvm-svn: 149027
Now the lexer just produces a token and the parser is the one responsible for
activating it.
This fixes problem like the one pr11797 where the lexer and the parser were not
in sync. This also let us be more strict on where in the file we accept
these pragmas.
llvm-svn: 149014
both actually tests what it wants to, doesn't have bogus and broken
assertions in it, and is also formatted much more cleanly and
consistently. Probably still some more that can be improved here, but
its much better.
Original commit message:
----
Try to unbreak the FreeBSD toolchain's detection of 32-bit targets
inside a 64-bit freebsd machine with the 32-bit compatibility layer
installed. The FreeBSD image always has the /usr/lib32 directory, so
test for the more concrete existence of crt1.o. Also enhance the tests
for freebsd to clarify what these trees look like and exercise the new
code.
Thanks to all the FreeBSD folks for helping me understand what caused
the failure and how we might fix it. =] That helps a lot. Also, yay
build bots.
llvm-svn: 149011
using CFArrayCreate & family.
Specifically, CFArrayCreate's input should be:
'A C array of the pointer-sized values to be in the new array.'
(radar://10717339)
llvm-svn: 149008
to the underlying consumer implementation. This allows us to unique reports across analyses to multiple functions (which
shows up with inlining).
llvm-svn: 148997
Original log:
Author: chandlerc <chandlerc@91177308-0d34-0410-b5e6-96231b3b80d8>
Date: Wed Jan 25 21:32:31 2012 +0000
Try to unbreak the FreeBSD toolchain's detection of 32-bit targets
inside a 64-bit freebsd machine with the 32-bit compatibility layer
installed. The FreeBSD image always has the /usr/lib32 directory, so
test for the more concrete existence of crt1.o. Also enhance the tests
for freebsd to clarify what these trees look like and exercise the new
code.
Thanks to all the FreeBSD folks for helping me understand what caused
the failure and how we might fix it. =] That helps a lot. Also, yay
build bots.
llvm-svn: 148993
inside a 64-bit freebsd machine with the 32-bit compatibility layer
installed. The FreeBSD image always has the /usr/lib32 directory, so
test for the more concrete existence of crt1.o. Also enhance the tests
for freebsd to clarify what these trees look like and exercise the new
code.
Thanks to all the FreeBSD folks for helping me understand what caused
the failure and how we might fix it. =] That helps a lot. Also, yay
build bots.
llvm-svn: 148981
Linux toolchain selection -- sorry folks. =] This should fix the Hexagon
toolchain.
However, I would point out that I see why my testing didn't catch this
-- we have no tests for Hexagon. ;]
llvm-svn: 148977
Pass a typo correction callback object from ParseCastExpr to
Sema::ActOnIdExpression to be a bit more selective about what kinds of
corrections will be allowed for unknown identifiers.
llvm-svn: 148973
The new callback, in addition to limiting which keywords to include in
the pool of typo correction candidates, also filters out non-keyword
candidates that don't refer to (template) functions that accept the
number of arguments that are present for the call being recovered.
llvm-svn: 148962
to suit the FreeBSD folks. Take them back to something closer to the old
behavior. We test whether the /usr/lib32 directory exists (within the
SysRoot), and use it if so, otherwise use /usr/lib.
FreeBSD folks, let me know if this causes any problems, or if you have
further tweaks.
llvm-svn: 148953
gross hack to provide it from my previous patch removing HostInfo. This
was enshrining (and hiding from my searches) the concept of storing and
diff-ing the host and target triples. We don't have the host triple
reliably available, so we need to merely inspect the target system. I've
changed the logic in selecting library search paths for NetBSD to match
what I provided for FreeBSD -- we include both search paths, but put the
32-bit-on-64-bit-host path first so it trumps.
NetBSD maintainers, you may want to tweak this, or feel free to ask me
to tweak it. I've left a FIXME here about the challeng I see in fixing
this properly.
llvm-svn: 148952
did anything. The two big pieces of functionality it tried to provide
was to cache the ToolChain objects for each target, and to figure out
the exact target based on the flag set coming in to an invocation.
However, it had a lot of flaws even with those goals:
- Neither of these have anything to do with the host, or its info.
- The HostInfo class was setup as a full blown class *hierarchy* with
a separate implementation for each "host" OS. This required
dispatching just to create the objects in the first place.
- The hierarchy claimed to represent the host, when in fact it was
based on the target OS.
- Each leaf in the hierarchy was responsible for implementing the flag
processing and caching, resulting in a *lot* of copy-paste code and
quite a few bugs.
- The caching was consistently done based on architecture alone, even
though *any* aspect of the targeted triple might change the behavior
of the configured toolchain.
- Flag processing was already being done in the Driver proper,
separating the flag handling even more than it already is.
Instead of this, we can simply have the dispatch logic in the Driver
which previously created a HostInfo object create the ToolChain objects.
Adding caching in the Driver layer is a tiny amount of code. Finally,
pulling the flag processing into the Driver puts it where it belongs and
consolidates it in one location.
The result is that two functions, and maybe 100 lines of new code
replace over 10 classes and 800 lines of code. Woot.
This also paves the way to introduce more detailed ToolChain objects for
various OSes without threading through a new HostInfo type as well, and
the accompanying boiler plate. That, of course, was the yak I started to
shave that began this entire refactoring escapade. Wheee!
llvm-svn: 148950
a HostInfo reference. Nothing about the HostInfo was used by any
toolchain except digging out the driver from it. This just makes that
a lot more direct. The change was accomplished entirely mechanically.
It's one step closer to removing the shim full of buggy copy/paste code
that is HostInfo.
llvm-svn: 148945
helped stage the refactoring of things a bit, but really isn't the right
place for it. The driver may be responsible for compilations with many
different targets. In those cases, having a target triple in the driver
is actively misleading because for many of those compilations that is
not actually the triple being targeted.
This moves the last remaining users of the Driver's target triple to
instead use the ToolChain's target triple. The toolchain has a single,
concrete target it operates over, making this a more stable and natural
home for it.
llvm-svn: 148942
adding search paths. Add them only when they exist, and prefix the paths
with the sysroot. This will allow targeting a FreeBSD sysroot on
a non-FreeBSD host machine, and perhaps more importantly should allow
testing the FreeBSD driver's behavior similarly to the Linux tests with
a fake tree of files in the regression test suite.
I don't have FreeBSD systems handy to build up the list of files that
should be used here, but this is the basic functionality and I'm hoping
Roman or someone from the community can contribute the actual test
cases.
llvm-svn: 148940
search paths for 32-bit targets. This avoids having to detect which is
expected for the target system, and the linker should DTRT, and take the
32-bit libraries from the first one when applicable. Thanks to Roman
Divacky for sanity checking this.
llvm-svn: 148939
The fundamental shift here is to stop making *any* assumptions about the
*host* triple. Where these assumptions you ask? Why, they were in one of
the two target triples referenced of course. This was the single biggest
place where the previously named "host triple" was actually used as
such. ;] The reason we were reasoning about the host is in order to
detect the use of '-m32' or '-m64' flags to change the target. These
flags shift the default target only slightly, which typically means
a slight deviation from the host. When using these flags, the GCC
installation is under a different triple from the one actually targeted
in the compilation, and we used the host triple to find it.
Too bad that wasn't even correct. Consider an x86 Linux host which has
a PPC64 cross-compiling GCC toolchain installed. This toolchain is also
configured for multiarch compiling and can target PPC32 with eth '-m32'
flag. When targeting 'powerpc-linux-gnu' or some other PPC32 triple, we
have to look for the PPC64 variant of the triple to find the GCC
install, and that triple is neither the host nor target.
The new logic computes the multiarch's alternate triple from the target
triple, and looks under both sides. It also looks more aggressively for
the correct subdirectory of the GCC installation, and exposes the
subdirectory in a nice programmatic way. This '/32' or '/64' suffix is
something we can reuse in many other parts of the toolchain.
An important note -- while this likely fixes a large category of
cross-compile use cases, that's not my primary goal, and I've not done
testing (or added test cases) for scenarios that may now work. If
someone else wants to try more interesting PPC cross compiles, I'd love
to have reports. But my focus is on factoring away the references to the
"host" triple. The refactoring is my goal, and so I'm mostly relying on
the existing (pretty good) test coverage we have here.
Future patches will leverage this new functionality to factor out more
and more of the toolchain's triple manipulation.
llvm-svn: 148935
"use the new ConstantVector::getSplat method where it makes sense."
Also simplify a bunch of code to use the Builder->getInt32 instead
of doing it the hard and ugly way. Much more progress could be made
here, but I don't plan to do it.
llvm-svn: 148926
iff its substitution contains an unexpanded parameter pack. This has the effect
that we now reject declarations such as this (which we used to crash when
expanding):
template<typename T> using Int = int;
template<typename ...Ts> void f(Int<Ts> ...ints);
The standard is inconsistent on how this case should be treated.
llvm-svn: 148905
is a declaration-stmt or an expression, we can discern a subset of cases where
the user erred in omitting the typename keyword before a dependent type name.
Fixes PR11358!
llvm-svn: 148896
additional data from the external Sema source. This properly copes
with modules that are imported after we have already searched in the
global method pool for a given selector. For PCH, it's a slight
pessimization to be fixed soon.
llvm-svn: 148891
return pre-built lists. Instead, it feeds the methods it deserializes
to Sema so that Sema can unique them, which keeps the chains shorter.
llvm-svn: 148889
This is accomplished by periodically reclaiming nodes in the graph. This was an optimization
done before the CFG was linearized, but the CFG linearization destroyed that optimization since each
freshly created node couldn't be reclaimed and we only looked at a window of nodes created between
each ProcessStmt. This optimization can be reclaimed my merely expanding the window to N number of nodes.
llvm-svn: 148888
specific to migrator. Use its first option to
warn migrating from GC to arc when
NSAllocateCollectable/NSReallocateCollectable is used.
// rdar://10532541
llvm-svn: 148887
of the target triple to stand in for the "host" triple.
Thanks to a great conversation with Richard Smith, I'm now much more
confident in how this is proceeding. In all of the places where we
currently reason about the "host" architecture or triple, what we really
want to reason about in the detected GCC installation architecture or
triple, and the ways in which that differs from the target. When we find
a GCC installation with a different triple from our target *but capable
of targeting our target* through an option such as '-m64', we want to
detect *that* case and change the paths within the GCC installation (and
libstdc++ installation) to reflect this difference.
This patch makes one function do this correctly. Subsequent commits will
hoist the logic used here into the GCCInstallation utility, and then
reuse it through the rest of the toolchains to fix the remaining places
where this is currently happening.
llvm-svn: 148852
inside of GCCInstallation to be a proper llvm::Triple. This is still
a touch ugly because we have to use it as a string in so many places,
but I think on the whole the more structured representation is better.
Comments of course welcome if this tradeoff isn't working for folks.
llvm-svn: 148843
address safety analysis (such as e.g. AddressSanitizer or SAFECode) for a specific function.
When building with AddressSanitizer, add AddressSafety function attribute to every generated function
except for those that have __attribute__((no_address_safety_analysis)).
With this patch we will be able to
1. disable AddressSanitizer for a particular function
2. disable AddressSanitizer-hostile optimizations (such as some cases of load widening) when AddressSanitizer is on.
llvm-svn: 148842
function. The logic for this, and I want to emphasize that this is the
logic for computing the *target* triple, is currently scattered
throughout various different HostInfo classes ToolChain factoring
functions. Best part, it is largely *duplicated* there. The goal is to
hoist all of that up to here where we can deal with it once, and in
a consistent manner.
Unfortunately, this uncovers more fun problems: the ToolChains assume
that the *actual* target triple is the one passed into them by these
factory functions, while the *host* triple is the one in the driver.
This already was a lie, and a damn lie, when the '-target' flag was
specified. It only really worked when the difference stemmed from '-m32'
and '-m64' flags. I'll have to fix that (and remove all the FIXMEs I've
introduced here to document the problem) before I can finish hoisting
the target-calculation logic.
It's bugs all the way down today it seems...
llvm-svn: 148839
pointer to incomplete type from an ExtWarn to an error. We put the
ExtWarn in place as part of a workaround for Boost (PR6527), but it
(1) doesn't actually match a GCC extension and (2) has been fixed for
two years in Boost, and (3) causes us to emit code that fails badly at
run time, so it's a bad idea to keep it. Fixes PR11803.
llvm-svn: 148838
when it actually has changed (and not, e.g., when we've simply attached a
deserialized macro definition). Good for ~1.5% reduction in module
file size, mostly in the identifier table.
llvm-svn: 148808
inside the innards of the Driver implementation, and only ever
implemented to return 'true' for the Darwin OSes. Instead use a more
direct query on the target triple and a comment to document why the
target matters here.
If anyone is worried about this predicate getting wider use or improper
use, I can make it a local or private predicate in the driver.
llvm-svn: 148797
The Driver has a fixed target, whether we like it or not, the
DefaultTargetTriple is not a default. This at least makes things more
honest. I'll eventually get rid of most (if not all) of
DefaultTargetTriple with this proper triple object. Bit of a WIP.
llvm-svn: 148796
This is the last piece of N3031 (decltype in weird places) - supporting
the use of decltype in a class ctor's member-initializer-list to
specify the base classes to initialize.
Reviewed by Richard Smith.
llvm-svn: 148789
Fix some review comments.
Add a test for deduction when std::initializer_list isn't available yet.
Fix redundant error messages. This fixes and outstanding FIXME too.
llvm-svn: 148735
Previously, for unqualified lookups, a positive cache hit is used as the
only non-keyword correction and a negative cache hit immediately returns
an empty TypoCorrection. With the new callback objects, this behavior
causes false negatives by not accounting for the fact that callback
objects alter the set of potential/allowed corrections. The new behavior
is to seed the set of corrections with the cached correction (for
positive hits) to estabilishing a baseline edit distance. Negative cache
hits are only stored or used when either no callback object is provided
or when it returns true for a call to ValidateCandidate with an empty
TypoCorrection (i.e. when ValidateCandidate does not seem to be doing
any checking of the TypoCorrection, such as when an instance of the base
callback class is used solely to specify the set of keywords to be accepted).
llvm-svn: 148720
to an error, so that users can turn them off if necessary. Note that
this does *not* change the behavior of in a SFINAE context, where we
still flag an error even if the warning is disabled. This matches
GCC's behavior.
llvm-svn: 148701