Splitting an alloca can decrease the alignment of GEPs into the
partition. Normally, rewriting accounts for this, but the code was
missing for uses of PHI nodes and select instructions.
Fixes https://bugs.llvm.org/show_bug.cgi?id=38707 .
Differential Revision: https://reviews.llvm.org/D51335
llvm-svn: 341094
In the past, DbgInfoIntrinsic has a strong assumption that these
intrinsics all have variables and expressions attached to them.
However, it is too strong to derive the class for other debug entities.
Now, it has problems for debug labels.
In order to make DbgInfoIntrinsic as a base class for 'debug info', I
create a class for 'variable debug info', DbgVariableIntrinsic.
DbgDeclareInst, DbgAddrIntrinsic, and DbgValueInst will be derived from it.
Differential Revision: https://reviews.llvm.org/D50220
llvm-svn: 338984
When rewriting an alloca partition copy the DL from the
old alloca over the the new one.
Differential Revision: https://reviews.llvm.org/D48640
llvm-svn: 335904
Review feedback from r328165. Split out just the one function from the
file that's used by Analysis. (As chandlerc pointed out, the original
change only moved the header and not the implementation anyway - which
was fine for the one function that was used (since it's a
template/inlined in the header) but not in general)
llvm-svn: 333954
Summary:
The verifier accepts PHI nodes with multiple entries for the
same basic block, as long as the value is the same.
As seen in PR37203, SROA did not handle such PHI nodes properly
when speculating loads over the PHI, since it inserted multiple
loads in the predecessor block and changed the PHI into having
multiple entries for the same basic block, but with different
values.
This patch teaches SROA to reuse the same speculated load for
each PHI duplicate entry in such situations.
Resolves: https://bugs.llvm.org/show_bug.cgi?id=37203
Reviewers: uabelho, chandlerc, hfinkel, bkramer, efriedma
Reviewed By: efriedma
Subscribers: dberlin, efriedma, llvm-commits
Differential Revision: https://reviews.llvm.org/D46426
llvm-svn: 332577
The current integer widening does not support rewriting partial split slices in rewriteIntegerStore (and rewriteIntegerLoad).
This patch adds explicit checks for this case in isIntegerWideningViableForSlice.
Before r322533, splitting is allowed only for the whole-alloca slice and hence the above case is implicitly rejected by another check `if (DL.getTypeStoreSize(ValueTy) > Size)` because whole-alloca slice is larger than the partition.
Differential Revision: https://reviews.llvm.org/D46750
llvm-svn: 332575
The DEBUG() macro is very generic so it might clash with other projects.
The renaming was done as follows:
- git grep -l 'DEBUG' | xargs sed -i 's/\bDEBUG\s\?(/LLVM_DEBUG(/g'
- git diff -U0 master | ../clang/tools/clang-format/clang-format-diff.py -i -p1 -style LLVM
- Manual change to APInt
- Manually chage DOCS as regex doesn't match it.
In the transition period the DEBUG() macro is still present and aliased
to the LLVM_DEBUG() one.
Differential Revision: https://reviews.llvm.org/D43624
llvm-svn: 332240
We've been running doxygen with the autobrief option for a couple of
years now. This makes the \brief markers into our comments
redundant. Since they are a visual distraction and we don't want to
encourage more \brief markers in new code either, this patch removes
them all.
Patch produced by
for i in $(git grep -l '\\brief'); do perl -pi -e 's/\\brief //g' $i & done
Differential Revision: https://reviews.llvm.org/D46290
llvm-svn: 331272
See r331124 for how I made a list of files missing the include.
I then ran this Python script:
for f in open('filelist.txt'):
f = f.strip()
fl = open(f).readlines()
found = False
for i in xrange(len(fl)):
p = '#include "llvm/'
if not fl[i].startswith(p):
continue
if fl[i][len(p):] > 'Config':
fl.insert(i, '#include "llvm/Config/llvm-config.h"\n')
found = True
break
if not found:
print 'not found', f
else:
open(f, 'w').write(''.join(fl))
and then looked through everything with `svn diff | diffstat -l | xargs -n 1000 gvim -p`
and tried to fix include ordering and whatnot.
No intended behavior change.
llvm-svn: 331184
Summary:
r327219 added wrappers to std::sort which randomly shuffle the container before sorting.
This will help in uncovering non-determinism caused due to undefined sorting
order of objects having the same key.
To make use of that infrastructure we need to invoke llvm::sort instead of std::sort.
Note: This patch is one of a series of patches to replace *all* std::sort to llvm::sort.
Refer the comments section in D44363 for a list of all the required patches.
Reviewers: kcc, pcc, danielcdh, jmolloy, sanjoy, dberlin, ruiu
Reviewed By: ruiu
Subscribers: ruiu, llvm-commits
Differential Revision: https://reviews.llvm.org/D45142
llvm-svn: 330059
Remove #include of Transforms/Scalar.h from Transform/Utils to fix layering.
Transforms depends on Transforms/Utils, not the other way around. So
remove the header and the "createStripGCRelocatesPass" function
declaration (& definition) that is unused and motivated this dependency.
Move Transforms/Utils/Local.h into Analysis because it's used by
Analysis/MemoryBuiltins.cpp.
llvm-svn: 328165
Summary:
This change is part of step five in the series of changes to remove alignment argument from
memcpy/memmove/memset in favour of alignment attributes. In particular, this changes the
SROA pass to cease using the old getAlignment() & setAlignment() APIs of MemoryIntrinsic in
favour of getting source & dest specific alignments through the new API. This allows us
to enhance visitMemTransferInst to be more aggressive setting the alignment in memcpy
calls that it creates, as well as to only change the alignment of a memcpy/memmove
argument that it replaces.
Steps:
Step 1) Remove alignment parameter and create alignment parameter attributes for
memcpy/memmove/memset. ( rL322965, rC322964, rL322963 )
Step 2) Expand the IRBuilder API to allow creation of memcpy/memmove with differing
source and dest alignments. ( rL323597 )
Step 3) Update Clang to use the new IRBuilder API. ( rC323617 )
Step 4) Update Polly to use the new IRBuilder API. ( rL323618 )
Step 5) Update LLVM passes that create memcpy/memmove calls to use the new IRBuilder API,
and those that use use MemIntrinsicInst::[get|set]Alignment() to use [get|set]DestAlignment()
and [get|set]SourceAlignment() instead. ( rL323886, rL323891, rL324148, rL324273, rL324278,
rL324384, rL324395, rL324402, rL324626, rL324642, rL324653, rL324654, rL324773, rL324774,
rL324781, rL324784, rL324955, rL324960, rL325816 )
Step 6) Remove the single-alignment IRBuilder API for memcpy/memmove, and the
MemIntrinsicInst::[get|set]Alignment() methods.
Reference
http://lists.llvm.org/pipermail/llvm-dev/2015-August/089384.htmlhttp://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151109/312083.html
Reviewers: chandlerc, bollu, efriedma
Reviewed By: efriedma
Subscribers: efriedma, eraman, llvm-commits
Differential Revision: https://reviews.llvm.org/D42974
llvm-svn: 327398
Now that we have the new TBAA metadata format that is capable of
representing accesses to aggregates, we can propagate TBAA access
tags from memory setting and transferring intrinsics to load and
store instructions and vice versa.
Since SROA produces lots of new loads and stores on optimized
builds, this change significantly decreases the share of
undecorated memory accesses on such builds.
Differential Revision: https://reviews.llvm.org/D41563
llvm-svn: 325329
Making a width of GEP Index, which is used for address calculation, to be one of the pointer properties in the Data Layout.
p[address space]:size:memory_size:alignment:pref_alignment:index_size_in_bits.
The index size parameter is optional, if not specified, it is equal to the pointer size.
Till now, the InstCombiner normalized GEPs and extended the Index operand to the pointer width.
It works fine if you can convert pointer to integer for address calculation and all registered targets do this.
But some ISAs have very restricted instruction set for the pointer calculation. During discussions were desided to retrieve information for GEP index from the Data Layout.
http://lists.llvm.org/pipermail/llvm-dev/2018-January/120416.html
I added an interface to the Data Layout and I changed the InstCombiner and some other passes to take the Index width into account.
This change does not affect any in-tree target. I added tests to cover data layouts with explicitly specified index size.
Differential Revision: https://reviews.llvm.org/D42123
llvm-svn: 325102
This patch fixes the assertion failure in SROA reported in PR35657.
PR35657 reports the assertion failure due to r319522 (splitting for non-whole-alloca slices), but this problem can happen even without r319522.
The problem exists in a check for reusing an existing alloca when rewriting partitions. As the original comment said, we can reuse the existing alloca if the new alloca has the same type and offset with the existing one. But the code checks only type of the alloca and then check the offset using an assert.
In a corner case with out-of-bounds access (e.g. @PR35657 function added in unit test), it is possible that the two allocas have the same type but different offsets.
This patch makes the check of the offset in the if condition, and re-enables the splitting for non-whole-alloca slices.
Differential Revision: https://reviews.llvm.org/D41981
llvm-svn: 322533
Summary:
In preparation for https://reviews.llvm.org/D41675 this NFC changes this
prototype of MemIntrinsicInst::setAlignment() to accept an unsigned instead
of a Constant.
llvm-svn: 322403
This patch introduce a switch to control splitting of non-whole-alloca slices with default off.
The switch will be default on again after fixing an issue reported in PR35657.
llvm-svn: 320958
Currently, SROA splits loads and stores only when they are accessing the whole alloca.
This patch relaxes this limitation to allow splitting a load/store if all other loads and stores to the alloca are disjoint to or fully included in the current load/store. If there is no other load or store that crosses the boundary of the current load/store, the current splitting implementation works as is.
The whole-alloca loads and stores meet this new condition and so they are still splittable.
Here is a simplified motivating example.
struct record {
long long a;
int b;
int c;
};
int func(struct record r) {
for (int i = 0; i < r.c; i++)
r.b++;
return r.b;
}
When updating r.b (or r.c as well), LLVM generates redundant instructions on some platforms (such as x86_64, ppc64); here, r.b and r.c are packed into one 64-bit GPR when the struct is passed as a method argument.
With this patch, the above example is compiled into only few instructions without loop.
Without the patch, unnecessary loop-carried dependency is introduced by SROA and the loop cannot be eliminated by the later optimizers.
Differential Revision: https://reviews.llvm.org/D32998
llvm-svn: 319407
An alloca may be larger than a variable that is described to be stored
there. Don't create a dbg.value for fragments that are outside of the
variable.
This fixes PR35447.
https://bugs.llvm.org/show_bug.cgi?id=35447
llvm-svn: 319230
Revert "[SROA] Propagate !range metadata when moving loads."
Revert "[Mem2Reg] Clang-format unformatted parts of this file. NFCI."
Davide says they broke a bot.
llvm-svn: 319131
This tries to propagate !range metadata to a pre-existing load
when a load is optimized out. This is done instead of adding an
assume because converting loads to and from assumes creates a
lot of IR.
Patch by Ariel Ben-Yehuda.
Differential Revision: https://reviews.llvm.org/D37216
llvm-svn: 319096
Summary:
SROA can fail in rewriting alloca but still rewrite a phi resulting
in dead instruction elimination. The Changed flag was not being set
correctly, resulting in downstream passes using stale analyses.
The included test case will assert during the second BDCE pass as a
result.
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D39921
llvm-svn: 318677
Summary:
Add LLVM_FORCE_ENABLE_DUMP cmake option, and use it along with
LLVM_ENABLE_ASSERTIONS to set LLVM_ENABLE_DUMP.
Remove NDEBUG and only use LLVM_ENABLE_DUMP to enable dump methods.
Move definition of LLVM_ENABLE_DUMP from config.h to llvm-config.h so
it'll be picked up by public headers.
Differential Revision: https://reviews.llvm.org/D38406
llvm-svn: 315590
This reverts commit 4e4ee1c507e2707bb3c208e1e1b6551c3015cbf5.
This is failing due to some code that isn't built on MSVC
so I didn't catch. Not immediately obvious how to fix this
at first glance, so I'm reverting for now.
llvm-svn: 315536
There's a lot of misuse of Twine scattered around LLVM. This
ranges in severity from benign (returning a Twine from a function
by value that is just a string literal) to pretty sketchy (storing
a Twine by value in a class). While there are some uses for
copying Twines, most of the very compelling ones are confined
to the Twine class implementation itself, and other uses are
either dubious or easily worked around.
This patch makes Twine's copy constructor private, and fixes up
all callsites.
Differential Revision: https://reviews.llvm.org/D38767
llvm-svn: 315530
The fix is to avoid invalidating our insertion point in
replaceDbgDeclare:
Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, InsertBefore);
+ if (DII == InsertBefore)
+ InsertBefore = &*std::next(InsertBefore->getIterator());
DII->eraseFromParent();
I had to write a unit tests for this instead of a lit test because the
use list order matters in order to trigger the bug.
The reduced C test case for this was:
void useit(int*);
static inline void inlineme() {
int x[2];
useit(x);
}
void f() {
inlineme();
inlineme();
}
llvm-svn: 313905
.. as well as the two subsequent changes r313826 and r313875.
This leads to segfaults in combination with ASAN. Will forward repro
instructions to the original author (rnk).
llvm-svn: 313876
Summary:
There already was code that tried to remove the dbg.declare, but that code
was placed after we had called
I->replaceAllUsesWith(UndefValue::get(I->getType()));
on the alloca, so when we searched for the relevant dbg.declare, we
couldn't find it.
Now we do the search before we call RAUW so there is a chance to find it.
An existing testcase needed update due to this. Two dbg.declare with undef
were removed and then suddenly one of the two CHECKS failed.
Before this patch we got
call void @llvm.dbg.declare(metadata i24* undef, metadata !14, metadata !DIExpression(DW_OP_LLVM_fragment, 32, 24)), !dbg !15
call void @llvm.dbg.declare(metadata %struct.prog_src_register* undef, metadata !14, metadata !DIExpression()), !dbg !15
call void @llvm.dbg.value(metadata i32 0, metadata !14, metadata !DIExpression(DW_OP_LLVM_fragment, 0, 32)), !dbg !15
call void @llvm.dbg.value(metadata i32 0, metadata !14, metadata !DIExpression(DW_OP_LLVM_fragment, 32, 24)), !dbg !15
and with it we get
call void @llvm.dbg.value(metadata i32 0, metadata !14, metadata !DIExpression(DW_OP_LLVM_fragment, 0, 32)), !dbg !15
call void @llvm.dbg.value(metadata i32 0, metadata !14, metadata !DIExpression(DW_OP_LLVM_fragment, 32, 24)), !dbg !15
However, the CHECKs in the testcase checked things in a silly order, so
they only passed since they found things in the first dbg.declare. Now
we changed the order of the checks and the test passes.
Reviewers: rnk
Reviewed By: rnk
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D37900
llvm-svn: 313875
Summary:
This implements the design discussed on llvm-dev for better tracking of
variables that live in memory through optimizations:
http://lists.llvm.org/pipermail/llvm-dev/2017-September/117222.html
This is tracked as PR34136
llvm.dbg.addr is intended to be produced and used in almost precisely
the same way as llvm.dbg.declare is today, with the exception that it is
control-dependent. That means that dbg.addr should always have a
position in the instruction stream, and it will allow passes that
optimize memory operations on local variables to insert llvm.dbg.value
calls to reflect deleted stores. See SourceLevelDebugging.rst for more
details.
The main drawback to generating DBG_VALUE machine instrs is that they
usually cause LLVM to emit a location list for DW_AT_location. The next
step will be to teach DwarfDebug.cpp how to recognize more DBG_VALUE
ranges as not needing a location list, and possibly start setting
DW_AT_start_offset for variables whose lifetimes begin mid-scope.
Reviewers: aprantl, dblaikie, probinson
Subscribers: eraman, hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D37768
llvm-svn: 313825
OpenCL 2.0 introduces the notion of memory scopes in atomic operations to
global and local memory. These scopes restrict how synchronization is
achieved, which can result in improved performance.
This change extends existing notion of synchronization scopes in LLVM to
support arbitrary scopes expressed as target-specific strings, in addition to
the already defined scopes (single thread, system).
The LLVM IR and MIR syntax for expressing synchronization scopes has changed
to use *syncscope("<scope>")*, where <scope> can be "singlethread" (this
replaces *singlethread* keyword), or a target-specific name. As before, if
the scope is not specified, it defaults to CrossThread/System scope.
Implementation details:
- Mapping from synchronization scope name/string to synchronization scope id
is stored in LLVM context;
- CrossThread/System and SingleThread scopes are pre-defined to efficiently
check for known scopes without comparing strings;
- Synchronization scope names are stored in SYNC_SCOPE_NAMES_BLOCK in
the bitcode.
Differential Revision: https://reviews.llvm.org/D21723
llvm-svn: 307722
SROA assumes alloca address space is 0, which causes assertion. This patch fixes that.
Differential Revision: https://reviews.llvm.org/D34104
llvm-svn: 306440
This is based heavily on the work done ni D34285. I mostly wanted to do
test cleanup for the author to save them some time, but I had a really
hard time understanding why it was so hard to write better test cases
for these issues.
The problem is that because SROA does a second rewrite of the loads and
because we *don't* propagate !nonnull for non-pointer loads, we first
introduced invalid !nonnull metadata and then stripped it back off just
in time to avoid most ways of this PR manifesting. Moving to the more
careful utility only fixes this by changing the predicate to look at the
new load's type rather than the target type. However, that *does* fix
the bug, and the utility is much nicer including adding range metadata
to model the nonnull property after a conversion to an integer.
However, we have bigger problems because we don't actually propagate
*range* metadata, and the utility to do this extracted from instcombine
isn't really in good shape to do this currently. It *only* handles the
case of copying range metadata from an integer load to a pointer load.
It doesn't even handle the trivial cases of propagating from one integer
load to another when they are the same width! This utility will need to
be beefed up prior to using in this location to get the metadata to
fully survive.
And even then, we need to go and teach things to turn the range metadata
into an assume the way we do with nonnull so that when we *promote* an
integer we don't lose the information.
All of this will require a new test case that looks kind-of like
`preserve-nonnull.ll` does here but focuses on range metadata. It will
also likely require more testing because it needs to correctly handle
changes to the integer width, especially as SROA actively tries to
change the integer width!
Last but not least, I'm a little worried about hooking the range
metadata up here because the instcombine logic for converting from
a range metadata *to* a nonnull metadata node seems broken in the face
of non-zero address spaces where null is not mapped to the integer `0`.
So that probably needs to get fixed with test cases both in SROA and in
instcombine to cover it.
But this *does* extract the core PR fix from D34285 of preventing the
!nonnull metadata from being propagated in a broken state just long
enough to feed into promotion and crash value tracking.
On D34285 there is some discussion of zero-extend handling because it
isn't necessary. First, the new load size covers all of the non-undef
(ie, possibly initialized) bits. This may even extend past the original
alloca if loading those bits could produce valid data. The only way its
valid for us to zero-extend an integer load in SROA is if the original
code had a zero extend or those bits were undef. And we get to assume
things like undef *never* satifies nonnull, so non undef bits can
participate here. No need to special case the zero-extend handling, it
just falls out correctly.
The original credit goes to Ariel Ben-Yehuda! I'm mostly landing this to
save a few rounds of trivial edits fixing style issues and test case
formulation.
Differental Revision: D34285
llvm-svn: 306379
Currently there is a bug in SROA::presplitLoadsAndStores which causes assertion in
GEPOperator::accumulateConstantOffset.
Basically it does not consider the situation that the pointer operand of load or store
may be in a non-zero address space and its size may be different from the size of
a pointer in address space 0.
This patch fixes assertion when compiling Blender Cycles kernels for amdgpu backend.
Diffferential Revision: https://reviews.llvm.org/D33298
llvm-svn: 305107
Summary:
As shown in the test case, SROA was crashing when trying to split
stores (to the alloca) of loads (from anywhere), because it assumed
the pointer operand to the loads and stores had to have the same
address space. This isn't the case. Make sure to use the correct
pointer type for both the load and the store.
Reviewed By: yaxunl
Differential Revision: https://reviews.llvm.org/D32593
llvm-svn: 304585
Summary:
Implements PR889
Removing the virtual table pointer from Value saves 1% of RSS when doing
LTO of llc on Linux. The impact on time was positive, but too noisy to
conclusively say that performance improved. Here is a link to the
spreadsheet with the original data:
https://docs.google.com/spreadsheets/d/1F4FHir0qYnV0MEp2sYYp_BuvnJgWlWPhWOwZ6LbW7W4/edit?usp=sharing
This change makes it invalid to directly delete a Value, User, or
Instruction pointer. Instead, such code can be rewritten to a null check
and a call Value::deleteValue(). Value objects tend to have their
lifetimes managed through iplist, so for the most part, this isn't a big
deal. However, there are some places where LLVM deletes values, and
those places had to be migrated to deleteValue. I have also created
llvm::unique_value, which has a custom deleter, so it can be used in
place of std::unique_ptr<Value>.
I had to add the "DerivedUser" Deleter escape hatch for MemorySSA, which
derives from User outside of lib/IR. Code in IR cannot include MemorySSA
headers or call the MemoryAccess object destructors without introducing
a circular dependency, so we need some level of indirection.
Unfortunately, no class derived from User may have any virtual methods,
because adding a virtual method would break User::getHungOffOperands(),
which assumes that it can find the use list immediately prior to the
User object. I've added a static_assert to the appropriate OperandTraits
templates to help people avoid this trap.
Reviewers: chandlerc, mehdi_amini, pete, dberlin, george.burgess.iv
Reviewed By: chandlerc
Subscribers: krytarowski, eraman, george.burgess.iv, mzolotukhin, Prazek, nlewycky, hans, inglorion, pcc, tejohnson, dberlin, llvm-commits
Differential Revision: https://reviews.llvm.org/D31261
llvm-svn: 303362