This patch extends the Region, Block and Operation visitors to also support pre-order walks.
We introduce a new template argument that dictates the walk order (only pre-order and
post-order are supported for now). The default order for Regions, Blocks and Operations is
post-order. Mixed orders (e.g., Region/Block pre-order + Operation post-order) could easily
be implemented, as shown in NumberOfExecutions.cpp.
Reviewed By: rriddle, frgossen, bondhugula
Differential Revision: https://reviews.llvm.org/D97217
In .mlir modules with larges amounts of attributes, e.g. a function with a larger number of argument attributes, the string comparison filtering greatly affects compile time. This revision switches to using a SmallDenseSet in these situations, resulting in over a 10x speed up in some situations.
Differential Revision: https://reviews.llvm.org/D97980
Now that attributes can be generated using ODS, we can move the builtin attributes as well. This revision removes a majority of the builtin attributes with a few left for followup revisions. The attributes moved to ODS in this revision are: AffineMapAttr, ArrayAttr, DictionaryAttr, IntegerSetAttr, StringAttr, SymbolRefAttr, TypeAttr, and UnitAttr.
Differential Revision: https://reviews.llvm.org/D97591
The current implementation of Value involves a pointer int pair with several different kinds of owners, i.e. BlockArgumentImpl*, Operation *, TrailingOpResult*. This design arose from the desire to save memory overhead for operations that have a very small number of results (generally 0-2). There are, unfortunately, many problematic aspects of the current implementation that make Values difficult to work with or just inefficient.
Operation result types are stored as a separate array on the Operation. This is very inefficient for many reasons: we use TupleType for multiple results, which can lead to huge amounts of memory usage if multi-result operations change types frequently(they do). It also means that simple methods like Value::getType/Value::setType now require complex logic to get to the desired type.
Value only has one pointer bit free, severely limiting the ability to use it in things like PointerUnion/PointerIntPair. Given that we store the kind of a Value along with the "owner" pointer, we only leave one bit free for users of Value. This creates situations where we end up nesting PointerUnions to be able to use Value in one.
As noted above, most of the methods in Value need to branch on at least 3 different cases which is both inefficient, possibly error prone, and verbose. The current storage of results also creates problems for utilities like ValueRange/TypeRange, which want to efficiently store base pointers to ranges (of which Operation* isn't really useful as one).
This revision greatly simplifies the implementation of Value by the introduction of a new ValueImpl class. This class contains all of the state shared between all of the various derived value classes; i.e. the use list, the type, and the kind. This shared implementation class provides several large benefits:
* Most of the methods on value are now branchless, and often one-liners.
* The "kind" of the value is now stored in ValueImpl instead of Value
This frees up all of Value's pointer bits, allowing for users to take full advantage of PointerUnion/PointerIntPair/etc. It also allows for storing more operation results as "inline", 6 now instead of 2, freeing up 1 word per new inline result.
* Operation result types are now stored in the result, instead of a side array
This drops the size of zero-result operations by 1 word. It also removes the memory crushing use of TupleType for operations results (which could lead up to hundreds of megabytes of "dead" TupleTypes in the context). This also allowed restructured ValueRange, making it simpler and one word smaller.
This revision does come with two conceptual downsides:
* Operation::getResultTypes no longer returns an ArrayRef<Type>
This conceptually makes some usages slower, as the iterator increment is slightly more complex.
* OpResult::getOwner is slightly more expensive, as it now requires a little bit of arithmetic
From profiling, neither of the conceptual downsides have resulted in any perceivable hit to performance. Given the advantages of the new design, most compiles are slightly faster.
Differential Revision: https://reviews.llvm.org/D97804
Some elementwise operations are not scalarizable, vectorizable, or tensorizable.
Split `ElementwiseMappable` trait into the following, more precise traits.
- `Elementwise`
- `Scalarizable`
- `Vectorizable`
- `Tensorizable`
This allows for reuse of `Elementwise` in dialects like HLO.
Differential Revision: https://reviews.llvm.org/D97674
Just a pure method renaming.
It is a preparation step for replacing "memory space as raw integer"
with more generic "memory space as attribute", which will be done in
separate commit.
The `MemRefType::getMemorySpace` method will return `Attribute` and
become the main API, while `getMemorySpaceAsInt` will be declared as
deprecated and will be replaced in all in-tree dialects (also in separate
commits).
Reviewed By: mehdi_amini, rriddle
Differential Revision: https://reviews.llvm.org/D97476
Move the results in line with the op instead. This results in each
operation having its own types recorded vs single tuple type, but comes
at benefit that every mutation doesn't incurs uniquing. Ran into cases
where updating result type of operation led to very large memory usage.
Differential Revision: https://reviews.llvm.org/D97652
Not only this is likely more efficient than BitVector::find_first(), but
also if the BitVector is empty find_first() returns -1, which
llvm::drop_begin isn't robust against.
This also exposed a bug in Dialect loading where it was not correctly identifying identifiers that had the dialect namespace as a prefix.
Differential Revision: https://reviews.llvm.org/D97431
A majority of operations have a very small number of interfaces, which means that the cost of using a hash map is generally larger for interface lookups than just a binary search. In the future when there are a number of operations with large amounts of interfaces, we can switch to a hybrid approach that optimizes lookups based on the number of interfaces. For now, however, a binary search is the best approach.
This dropped compile time on a largish TF MLIR module by 20%(half a second).
Differential Revision: https://reviews.llvm.org/D96085
This revision adds the infrastructure for `Debug Actions`. This is a DEBUG only
API that allows for external entities to control various aspects of compiler
execution. This is conceptually similar to something like DebugCounters in LLVM, but at a lower level. This framework doesn't make any assumptions about how the higher level driver is controlling the execution, it merely provides a framework for connecting the two together. This means that on top of DebugCounter functionality, we could also provide more interesting drivers such as interactive execution. A high level overview of the workflow surrounding debug actions is
shown below:
* Compiler developer defines an `action` that is taken by the a pass,
transformation, utility that they are developing.
* Depending on the needs, the developer dispatches various queries, pertaining
to this action, to an `action manager` that will provide an answer as to
what behavior the action should do.
* An external entity registers an `action handler` with the action manager,
and provides the logic to resolve queries on actions.
The exact definition of an `external entity` is left opaque, to allow for more
interesting handlers.
This framework was proposed here: https://llvm.discourse.group/t/rfc-debug-actions-in-mlir-debug-counters-for-the-modern-world
Differential Revision: https://reviews.llvm.org/D84986
`verifyConstructionInvariants` is intended to allow for verifying the invariants of an attribute/type on construction, and `getChecked` is intended to enable more graceful error handling aside from an assert. There are a few problems with the current implementation of these methods:
* `verifyConstructionInvariants` requires an mlir::Location for emitting errors, which is prohibitively costly in the situations that would most likely use them, e.g. the parser.
This creates an unfortunate code duplication between the verifier code and the parser code, given that the parser operates on llvm::SMLoc and it is an undesirable overhead to pre-emptively convert from that to an mlir::Location.
* `getChecked` effectively requires duplicating the definition of the `get` method, creating a quite clunky workflow due to the subtle different in its signature.
This revision aims to talk the above problems by refactoring the implementation to use a callback for error emission. Using a callback allows for deferring the costly part of error emission until it is actually necessary.
Due to the necessary signature change in each instance of these methods, this revision also takes this opportunity to cleanup the definition of these methods by:
* restructuring the signature of `getChecked` such that it can be generated from the same code block as the `get` method.
* renaming `verifyConstructionInvariants` to `verify` to match the naming scheme of the rest of the compiler.
Differential Revision: https://reviews.llvm.org/D97100
Allow clients to create a new ShapedType of the same "container" type
but with different element or shape. First use case is when refining
shape during shape inference without needing to consider which
ShapedType is being refined.
Differential Revision: https://reviews.llvm.org/D96682
Dialects themselves do not support repeated addition of interfaces with the
same TypeID. However, in case of delayed registration, the registry may contain
such an interface, or have the same interface registered several times due to,
e.g., dependencies. Make sure we delayed registration does not attempt to add
an interface with the same TypeID more than once.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D96606
Rationale:
This computation failed ASAN for the following input
(integer overflow during 4032000000000000000 * 100):
tensor<100x200x300x400x500x600x700x800xf32>
This change adds a simple overflow detection during
debug mode (which we run more regularly than ASAN).
Arguably this is an unrealistic tensor input, but
in the context of sparse tensors, we may start to
see cases like this.
Bug:
https://bugs.llvm.org/show_bug.cgi?id=49136
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D96530
The AffineMap in the MemRef inferred by SubViewOp may have uncompressed symbols which result in type mismatch on otherwise unused symbols. Make the computation of the AffineMap compress those unused symbols which results in better canonical types.
Additionally, improve the error message to report which inferred type was expected.
Differential Revision: https://reviews.llvm.org/D96551
MLIRContext allows its users to access directly to the DialectRegistry it
contains. While sometimes useful for registering additional dialects on an
already existing context, this breaks the encapsulation by essentially giving
raw accesses to a part of the context's internal state. Remove this mutable
access and instead provide a method to append a given DialectRegistry to the
one already contained in the context. Also provide a shortcut mechanism to
construct a context from an already existing registry, which seems to be a
common use case in the wild. Keep read-only access to the registry contained in
the context in case it needs to be copied or used for constructing another
context.
With this change, DialectRegistry is no longer concerned with loading the
dialects and deciding whether to invoke delayed interface registration. Loading
is concentrated in the MLIRContext, and the functionality of the registry
better reflects its name.
Depends On D96137
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D96331
This introduces a mechanism to register interfaces for a dialect without making
the dialect itself depend on the interface. The registration request happens on
DialectRegistry and, if the dialect has not been loaded yet, the actual
registration is delayed until the dialect is loaded. It requires
DialectRegistry to become aware of the context that contains it and the context
to expose methods for querying if a dialect is loaded.
This mechanism will enable a simple extension mechanism for dialects that can
have interfaces defined outside of the dialect code. It is particularly helpful
for, e.g., translation to LLVM IR where we don't want the dialect itself to
depend on LLVM IR libraries.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D96137
These properties were useful for a few things before traits had a better integration story, but don't really carry their weight well these days. Most of these properties are already checked via traits in most of the code. It is better to align the system around traits, and improve the performance/cost of traits in general.
Differential Revision: https://reviews.llvm.org/D96088
This reverts commit 511dd4f438 along with
a couple fixes.
Original message:
Now the context is the first, rather than the last input.
This better matches the rest of the infrastructure and makes
it easier to move these types to being declaratively specified.
Phabricator: https://reviews.llvm.org/D96111
Now the context is the first, rather than the last input.
This better matches the rest of the infrastructure and makes
it easier to move these types to being declaratively specified.
Differential Revision: https://reviews.llvm.org/D96111
The `AffineMap` class follows the same semantic as Type and Attribute.
It is immutable object, so it make sence to mark its methods as const.
Also part of its API is already marked as const, this change just make the API consistent.
Reviewed By: ftynse, bondhugula
Differential Revision: https://reviews.llvm.org/D96026
This makes ignoring a result explicit by the user, and helps to prevent accidental errors with dropped results. Marking LogicalResult as no discard was always the intention from the beginning, but got lost along the way.
Differential Revision: https://reviews.llvm.org/D95841
This revision adds two new classes, RewriterBase and IRRewriter. RewriterBase is a new shared base class between IRRewriter and PatternRewriter. PatternRewriter will continue to be the base class used to perform rewrites within a rewrite pattern. IRRewriter on the other hand, is a new class that allows for tracking IR rewrites from outside of a rewrite pattern. In this revision all of the old API from PatternRewriter is moved to RewriterBase, but the distinction between IRRewriter and PatternRewriter is kept on the chance that a necessary API divergence happens in the future.
Currently if you want to have some utility that transforms a piece of IR and share it between pattern and non-pattern code, you have to duplicate it. This revision enables the creation of utilities that can be invoked from rewrite patterns and normal transformation code:
```c++
void someSharedUtility(RewriterBase &rewriter, ...) {
// Some interesting IR mutation here.
}
// Some RewritePattern
LogicalResult MyPattern::matchAndRewrite(Operation *op, PatternRewriter &rewriter) {
...
someSharedUtility(rewriter, ...);
...
}
// Some Pass
void MyPass::runOnOperation() {
...
IRRewriter rewriter(...);
someSharedUtility(rewriter, ...);
}
```
Differential Revision: https://reviews.llvm.org/D94638
* Fixing missing `type` keyword in alias print
* Add test for large tuple type alias & rerun output to verify printed
form can be parsed (which caught the above).
Tuples can occupy quite a lot of space, instead of printing out tuple type
everywhere, just use the type alias if larger (arbitrarily chose a bound for
now).
Differential Revision: https://reviews.llvm.org/D95707
Update ElementsAttr::isValidIndex to handle ElementsAttr with a scalar. Scalar will have rank 0.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D95663
This class is looking up a dialect prefix on the identifier on initialization
and keeping a pointer to the Dialect when found.
The NamedAttribute key is now a DialectIdentifier.
Reviewed By: rriddle, jpienaar
Differential Revision: https://reviews.llvm.org/D95418
Expand existing one to handle the common case for verifying compatible
is existing and inferred. This considers arrays equivalent if they they
have the same size and pairwise compatible elements.
The subview verifier in the rank-reduced case is plainly skipping verification
when the resulting type is a memref with empty affine map. This is generally incorrect.
Instead, form the actual expected rank-reduced MemRefType that takes into account the projections of 1's dimensions. Then, check the canonicalized expected rank-reduced type against the canonicalized candidate type.
Differential Revision: https://reviews.llvm.org/D95316
This prevents needless reinitialization for clients that want to reuse a pass manager multiple times. A new `getRegisryHash` function is exposed by the context to give a rough indicator of when the context registry has changed.
Differential Revision: https://reviews.llvm.org/D95493
This extracts the implementation of getType, setType, and getBody from
FunctionSupport.h into the mlir::impl namespace and defines them
generically in FunctionSupport.cpp. This allows them to be used
elsewhere for any FunctionLike ops that use FunctionType for their
type signature.
Using the new helpers, FuncOpSignatureConversion is generalized to
work with all such FunctionLike ops. Convenience helpers are added to
configure the pattern for a given concrete FunctionLike op type.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D95021
An `unrealized_conversion_cast` operation represents an unrealized conversion
from one set of types to another, that is used to enable the inter-mixing of
different type systems. This operation should not be attributed any special
representational or execution semantics, and is generally only intended to be
used to satisfy the temporary intermixing of type systems during the conversion
of one type system to another.
This operation was discussed in the following RFC(and ODM):
https://llvm.discourse.group/t/open-meeting-1-14-dialect-conversion-and-type-conversion-the-question-of-cast-operations/
Differential Revision: https://reviews.llvm.org/D94832
A cast-like operation is one that converts from a set of input types to a set of output types. The arity of the inputs may be from 0-N, whereas the arity of the outputs may be anything from 1-N. Cast-like operations are removable in cases where they produce a "no-op", i.e when the input types and output types match 1-1.
Differential Revision: https://reviews.llvm.org/D94831
In prehistorical times, AffineApplyOp was allowed to produce multiple values.
This allowed the creation of intricate SSA use-def chains.
AffineApplyNormalizer was originally introduced as a means of reusing the AffineMap::compose method to write SSA use-def chains.
Unfortunately, symbols that were produced by an AffineApplyOp needed to be promoted to dims and reordered for the mathematical composition to be valid.
Since then, single result AffineApplyOp became the law of the land but the original assumptions were not revisited.
This revision revisits these assumptions and retires AffineApplyNormalizer.
Differential Revision: https://reviews.llvm.org/D94920
This revision adds a new `replaceOpWithIf` hook that replaces uses of an operation that satisfy a given functor. If all uses are replaced, the operation gets erased in a similar manner to `replaceOp`. DialectConversion support will be added in a followup as this requires adjusting how replacements are tracked there.
Differential Revision: https://reviews.llvm.org/D94632
The type tablegen backend now has enough support to represent these types well enough, so we can now move them to be declaratively defined.
Differential Revision: https://reviews.llvm.org/D94275
The functions will be removed by January 20th.
All call sites within MLIR have been converted in previous changes.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D94191
A previous patch made Value::getType() be resilient to null values which was
considered to be too sweeping. This is a more targeted change which requires
deabstracting some templates.
A middle ground would be to make ValueTypeIterator be tolerant to null values.
Differential Revision: https://reviews.llvm.org/D93908
The asmprinter would crash when dumping IR objects that had their
operands dropped. With this change, we now get this output, which
makes op->dump() style debugging more useful.
%5 = "firrtl.eq"(<<NULL>>, <<NULL>>) : (<<NULL TYPE>>, <<NULL TYPE>>) -> !firrtl.uint<1>
Previously the asmprinter would crash getting the types of the null operands.
Differential Revision: https://reviews.llvm.org/D93869
This class used to serve a few useful purposes:
* Allowed containing a null DictionaryAttr
* Provided some simple mutable API around a DictionaryAttr
The first of which is no longer an issue now that there is much better caching support for attributes in general, and a cache in the context for empty dictionaries. The second results in more trouble than it's worth because it mutates the internal dictionary on every action, leading to a potentially large number of dictionary copies. NamedAttrList is a much better alternative for the second use case, and should be modified as needed to better fit it's usage as a DictionaryAttrBuilder.
Differential Revision: https://reviews.llvm.org/D93442
This better matches the rest of the infrastructure, is much simpler, and makes it easier to move these types to being declaratively specified.
Differential Revision: https://reviews.llvm.org/D93432
Previous behavior would fail if inserting an operation that already
existed. Now SymbolTable::insert can also be used as a way to make a
symbol's name unique even after insertion.
Further TODOs have been left over naming and consistent behavior
considerations.
Differential Revision: https://reviews.llvm.org/D93349
This exposes several issues with the current generation that this revision also fixes.
* TypeDef now allows specifying the base class to use when generating.
* TypeDef now inherits from DialectType, which allows for using it as a TypeConstraint
* Parser/Printers are now no longer generated in the header(removing duplicate symbols), and are now only generated when necessary.
- Now that generatedTypeParser/Printer are only generated in the definition file,
existing users will need to manually expose this functionality when necessary.
* ::get() is no longer generated for singleton types, because it isn't necessary.
Differential Revision: https://reviews.llvm.org/D93270
This revision adds a new `printNewline` hook to OpAsmPrinter that allows for printing a newline within the custom format of an operation, that is then indented to the start of the operation. Support for the declarative assembly format is also added, in the form of a `\n` literal.
Differential Revision: https://reviews.llvm.org/D93151
Trailing objects are really nice for storing additional data inline with the main class, and is something that we heavily take advantage of for Operation(and many other classes). To get the address of the inline data you need to compute the address by doing some pointer arithmetic taking into account any objects stored before the object you want to access. Most classes keep the count of the number of objects, so this is relatively cheap to compute. This is not the case for results though, which have two different types(inline and trailing) that are not necessarily as cheap to compute as the count for other objects. This revision moves the storage for results to before the operation and stores them in reverse order. This allows for getting results to still be very fast given that they are never iterated directly in order, and also greatly improves the speed when accessing the other trailing objects of an operation(operands/regions/blocks/etc).
This reduced compile time when compiling a decently sized mlir module by about ~400ms, or 2.17s -> 1.76s.
Differential Revision: https://reviews.llvm.org/D92687
This is part of a larger refactoring the better congregates the builtin structures under the BuiltinDialect. This also removes the problematic "standard" naming that clashes with the "standard" dialect, which is not defined within IR/. A temporary forward is placed in StandardTypes.h to allow time for downstream users to replaced references.
Differential Revision: https://reviews.llvm.org/D92435
There isn't a good reason for anything within IR to specifically reference any of the builtin operations. The only place that had a good reason in the past was AsmPrinter, but the behavior there doesn't need to hardcode ModuleOp anymore.
Differential Revision: https://reviews.llvm.org/D92448
Given that OpState already implicit converts to Operator*, this seems reasonable.
The alternative would be to add more functions to OpState which forward to Operation.
Reviewed By: rriddle, ftynse
Differential Revision: https://reviews.llvm.org/D92266
PDL patterns are now supported via a new `PDLPatternModule` class. This class contains a ModuleOp with the pdl::PatternOp operations representing the patterns, as well as a collection of registered C++ functions for native constraints/creations/rewrites/etc. that may be invoked via the pdl patterns. Instances of this class are added to an OwningRewritePatternList in the same fashion as C++ RewritePatterns, i.e. via the `insert` method.
The PDL bytecode is an in-memory representation of the PDL interpreter dialect that can be efficiently interpreted/executed. The representation of the bytecode boils down to a code array(for opcodes/memory locations/etc) and a memory buffer(for storing attributes/operations/values/any other data necessary). The bytecode operations are effectively a 1-1 mapping to the PDLInterp dialect operations, with a few exceptions in cases where the in-memory representation of the bytecode can be more efficient than the MLIR representation. For example, a generic `AreEqual` bytecode op can be used to represent AreEqualOp, CheckAttributeOp, and CheckTypeOp.
The execution of the bytecode is split into two phases: matching and rewriting. When matching, all of the matched patterns are collected to avoid the overhead of re-running parts of the matcher. These matched patterns are then considered alongside the native C++ patterns, which rewrite immediately in-place via `RewritePattern::matchAndRewrite`, for the given root operation. When a PDL pattern is matched and has the highest benefit, it is passed back to the bytecode to execute its rewriter.
Differential Revision: https://reviews.llvm.org/D89107
A splat attribute have a single element during printing so we should
treat it as such when we decide if we elide it or not based on the flag
intended to elide large attributes.
Reviewed By: rriddle, mehdi_amini
Differential Revision: https://reviews.llvm.org/D92165
D78076 supports big endian in DenseElementsAttr, but does not work when
APInt has multiple words(the number of bits > 64). This patch updates
D78076 to support it.
This patch removed the fix in D78076 and re-implemented to support multiple words.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D80272
Null types are commonly used as an error marker. Catch them in the constructor
of Operation if they are present in the result type list, as otherwise this
could lead to further surprising behavior when querying op result types.
Fix AsyncToLLVM and StandardToLLVM that were using null types when constructing
operations.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D91770
On some platform (like WebAssembly), alignof(mlir::AttributeStorage) is 4 instead of 8. As a result, it makes the program crashes since PointerLikeTypeTraits<mlir::Attribute>::NumLowBitsAvailable is 3.
So I explicitly set the alignment of mlir::AttributeStoarge to 64 bits, and set PointerLikeTypeTraits<mlir::Attribute>::NumLowBitsAvailable according to it.
I also fixed an another related error (alignof(NamedAttribute) -> alignof(DictionaryAttributeStorage)) based on reviewer's comments.
Reviewed By: dblaikie, rriddle
Differential Revision: https://reviews.llvm.org/D91062
These includes have been deprecated in favor of BuiltinDialect.h, which contains the definitions of ModuleOp and FuncOp.
Differential Revision: https://reviews.llvm.org/D91572
This has been a long standing TODO, and cleans up a bit of IR/. This will also make it easier to move FuncOp out of IR/ at some point in the future. For now, Module.h and Function.h just forward BuiltinDialect.h. These files will be removed in a followup.
Differential Revision: https://reviews.llvm.org/D91571
motivated by a refactoring in the new sparse code (yet to be merged), this avoids some lengthy code dup
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D91465
This revision adds support in the parser/printer for "deferrable" aliases, i.e. those that can be resolved after printing has finished. This allows for printing aliases for operation locations after the module instead of before, i.e. this is now supported:
```
"foo.op"() : () -> () loc(#loc)
#loc = loc("some_location")
```
Differential Revision: https://reviews.llvm.org/D91227
- Remove the default valued arguments from these functions.
- Besides FuncOp, looks like no other in-tree op is using these functions.
Differential Revision: https://reviews.llvm.org/D91369
This change does two main things
1) An operation might have multiple dependences to the same
producer. Not tracking them correctly can result in incorrect code
generation with fusion. To rectify this the dependence tracking
needs to also have the operand number in the consumer.
2) Improve the logic used to find the fused loops making it easier to
follow. The only constraint for fusion is that linalg ops (on
buffers) have update semantics for the result. Fusion should be
such that only one iteration of the fused loop (which is also a
tiled loop) must touch only one (disjoint) tile of the output. This
could be relaxed by allowing for recomputation that is the default
when oeprands are tensors, or can be made legal with promotion of
the fused view (in future).
Differential Revision: https://reviews.llvm.org/D90579
If block A and B are in different regions and region of A is not an ancestor of
B, either A is included in region of B or the two regions are disjoint. In both
case A doesn't post-dominate B.
Differential Revision: https://reviews.llvm.org/D91225
This patch adds an `ElementwiseMappable` trait as discussed in the RFC
here:
https://llvm.discourse.group/t/rfc-std-elementwise-ops-on-tensors/2113/23
This trait can power a number of transformations and analyses.
A subsequent patch adds a convert-elementwise-to-linalg pass exhibits
how this trait allows writing generic transformations.
See https://reviews.llvm.org/D90354 for that patch.
This trait slightly changes some verifier messages, but the diagnostics
are usually about as good. I fiddled with the ordering of the trait in
the .td file trait lists to minimize the changes here.
Differential Revision: https://reviews.llvm.org/D90731
Locations often get very long and clutter up operations when printed inline with them. This revision adds support for using aliases with trailing operation locations, and makes printing with aliases the default behavior. Aliases in the trailing location take the form `loc(<alias>)`, such as `loc(#loc0)`. As with all aliases, using `mlir-print-local-scope` can be used to disable them and get the inline behavior.
Differential Revision: https://reviews.llvm.org/D90652
This revision refactors the way that attributes/types are considered when generating aliases. Instead of considering all of the attributes/types of every operation, we perform a "fake" print step that prints the operations using a dummy printer to collect the attributes and types that would actually be printed during the real process. This removes a lot of attributes/types from consideration that generally won't end up in the final output, e.g. affine map attributes in an `affine.apply`/`affine.for`.
This resolves a long standing TODO w.r.t aliases, and helps to have a much cleaner textual output format. As a datapoint to the latter, as part of this change several tests were identified as testing for the presence of attributes aliases that weren't actually referenced by the custom form of any operation.
To ensure that this wouldn't cause a large degradation in compile time due to the second full print, I benchmarked this change on a very large module with a lot of operations(The file is ~673M/~4.7 million lines long). This file before this change take ~6.9 seconds to print in the custom form, and ~7 seconds after this change. In the custom assembly case, this added an average of a little over ~100 miliseconds to the compile time. This increase was due to the way that argument attributes on functions are structured and how they get printed; i.e. with a better representation the negative impact here can be greatly decreased. When printing in the generic form, this revision had no observable impact on the compile time. This benchmarking leads me to believe that the impact of this change on compile time w.r.t printing is closely related to `print` methods that perform a lot of additional/complex processing outside of the OpAsmPrinter.
Differential Revision: https://reviews.llvm.org/D90512
- Change syntax for FuncOp to be `func <visibility>? @name` instead of printing the
visibility in the attribute dictionary.
- Since printFunctionLikeOp() and parseFunctionLikeOp() are also used by other
operations, make the "inline visibility" an opt-in feature.
- Updated unit test to use and check the new syntax.
Differential Revision: https://reviews.llvm.org/D90859
- When a block is not empty and does not end with a terminator, flag the error on the
last operation of the block instead of the start of the block.
Differential Revision: https://reviews.llvm.org/D90988
- Verify that attributes parsed using a custom parser do not have duplicates.
- If there are duplicated in the attribute dictionary in the input, they get caught during the
dictionary parsing.
- This check verifies that there is no duplication between the parsed dictionary and any
attributes that might be added by the custom parser (or when the custom parsing code
adds duplicate attributes).
- Fixes https://bugs.llvm.org/show_bug.cgi?id=48025
Differential Revision: https://reviews.llvm.org/D90502
Previously, they were only defined for `FuncOp`.
To support this, `FunctionLike` needs a way to get an updated type
from the concrete operation. This adds a new hook for that purpose,
called `getTypeWithoutArgsAndResults`.
For now, `FunctionLike` continues to assume the type is
`FunctionType`, and concrete operations that use another type can hide
the `getType`, `setType`, and `getTypeWithoutArgsAndResults` methods.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D90363
This revision refactors the base Op/AbstractOperation classes to reduce the amount of generated code size when defining a new operation. The current scheme involves taking the address of functions defined directly on Op and Trait classes. This is problematic because even when these functions are empty/unused we still result in these functions being defined in the main executable. In this revision, we switch to using SFINAE and template type filtering to remove remove functions that are not needed/used. For example, if an operation does not define a custom `print` method we shouldn't define a templated `printAssembly` method for it. The same applies to parsing/folding/verification/etc. This dropped MLIR code size for a large downstream library by ~10%(~1 mb in an opt build).
Differential Revision: https://reviews.llvm.org/D90196
Previously they were separated into "instance" and "kind" aliases, and also required that the dialect know ahead of time all of the instances that would have a corresponding alias. This approach was very clunky and not ergonomic to interact with. The new approach is to provide the dialect with an instance of an attribute/type to provide an alias for, fully replacing the original split approach.
Differential Revision: https://reviews.llvm.org/D89354
* Check region count for unknown symbol tables first, as it is a faster check
* Add an accessor to MutableDictionaryAttr to get the internal dictionary without creating a new one if it is empty. This avoids an otherwise unnecessary lookup of an MLIRContext.
This patch fixes a bug [[ https://bugs.llvm.org/show_bug.cgi?id=46091 | 46091 ]]
Raw data for the `dense-element attribute` is written in little endian (LE) format.
This commit converts the format to big endian (BE) in ʻAttribute Parser` on the
BE machine. Also, when outputting on a BE machine, the BE format is converted
to LE in "AsmPrinter".
Differential Revision: https://reviews.llvm.org/D80695