The special lowering for __builtin_mul_overflow introduced in r320902
fixed an ICE seen when passing mixed-sign operands to the builtin.
This patch extends the special lowering to cover mixed-width, mixed-sign
operands. In a few common scenarios, calls to muloti4 will no longer be
emitted.
This should address the latest comments in PR34920 and work around the
link failure seen in:
https://bugzilla.redhat.com/show_bug.cgi?id=1657544
Testing:
- check-clang
- A/B output comparison with: https://gist.github.com/vedantk/3eb9c88f82e5c32f2e590555b4af5081
Differential Revision: https://reviews.llvm.org/D55843
llvm-svn: 349542
buffer.
Seems to me, nvlink has a bug with the proper support of the weakly
linked symbols. It does not allow to define several shared memory buffer
with the different sizes even with the weak linkage. Instead we always
use 128 bytes buffer to prevent nvlink from the error message emission.
llvm-svn: 349540
This is exactly a "CreateBitCast", so refactor this to get rid of a
'new'.
Note that this slightly changes the test, as the Builder is now
seemingly smart enough to fold one of the bitcasts into the annotation
call.
Change-Id: I1733fb1fdf91f5c9d88651067130b9a4e7b5ab67
llvm-svn: 349506
Summary:
Add an option to initialize automatic variables with either a pattern or with
zeroes. The default is still that automatic variables are uninitialized. Also
add attributes to request uninitialized on a per-variable basis, mainly to disable
initialization of large stack arrays when deemed too expensive.
This isn't meant to change the semantics of C and C++. Rather, it's meant to be
a last-resort when programmers inadvertently have some undefined behavior in
their code. This patch aims to make undefined behavior hurt less, which
security-minded people will be very happy about. Notably, this means that
there's no inadvertent information leak when:
- The compiler re-uses stack slots, and a value is used uninitialized.
- The compiler re-uses a register, and a value is used uninitialized.
- Stack structs / arrays / unions with padding are copied.
This patch only addresses stack and register information leaks. There's many
more infoleaks that we could address, and much more undefined behavior that
could be tamed. Let's keep this patch focused, and I'm happy to address related
issues elsewhere.
To keep the patch simple, only some `undef` is removed for now, see
`replaceUndef`. The padding-related infoleaks are therefore not all gone yet.
This will be addressed in a follow-up, mainly because addressing padding-related
leaks should be a stand-alone option which is implied by variable
initialization.
There are three options when it comes to automatic variable initialization:
0. Uninitialized
This is C and C++'s default. It's not changing. Depending on code
generation, a programmer who runs into undefined behavior by using an
uninialized automatic variable may observe any previous value (including
program secrets), or any value which the compiler saw fit to materialize on
the stack or in a register (this could be to synthesize an immediate, to
refer to code or data locations, to generate cookies, etc).
1. Pattern initialization
This is the recommended initialization approach. Pattern initialization's
goal is to initialize automatic variables with values which will likely
transform logic bugs into crashes down the line, are easily recognizable in
a crash dump, without being values which programmers can rely on for useful
program semantics. At the same time, pattern initialization tries to
generate code which will optimize well. You'll find the following details in
`patternFor`:
- Integers are initialized with repeated 0xAA bytes (infinite scream).
- Vectors of integers are also initialized with infinite scream.
- Pointers are initialized with infinite scream on 64-bit platforms because
it's an unmappable pointer value on architectures I'm aware of. Pointers
are initialize to 0x000000AA (small scream) on 32-bit platforms because
32-bit platforms don't consistently offer unmappable pages. When they do
it's usually the zero page. As people try this out, I expect that we'll
want to allow different platforms to customize this, let's do so later.
- Vectors of pointers are initialized the same way pointers are.
- Floating point values and vectors are initialized with a negative quiet
NaN with repeated 0xFF payload (e.g. 0xffffffff and 0xffffffffffffffff).
NaNs are nice (here, anways) because they propagate on arithmetic, making
it more likely that entire computations become NaN when a single
uninitialized value sneaks in.
- Arrays are initialized to their homogeneous elements' initialization
value, repeated. Stack-based Variable-Length Arrays (VLAs) are
runtime-initialized to the allocated size (no effort is made for negative
size, but zero-sized VLAs are untouched even if technically undefined).
- Structs are initialized to their heterogeneous element's initialization
values. Zero-size structs are initialized as 0xAA since they're allocated
a single byte.
- Unions are initialized using the initialization for the largest member of
the union.
Expect the values used for pattern initialization to change over time, as we
refine heuristics (both for performance and security). The goal is truly to
avoid injecting semantics into undefined behavior, and we should be
comfortable changing these values when there's a worthwhile point in doing
so.
Why so much infinite scream? Repeated byte patterns tend to be easy to
synthesize on most architectures, and otherwise memset is usually very
efficient. For values which aren't entirely repeated byte patterns, LLVM
will often generate code which does memset + a few stores.
2. Zero initialization
Zero initialize all values. This has the unfortunate side-effect of
providing semantics to otherwise undefined behavior, programs therefore
might start to rely on this behavior, and that's sad. However, some
programmers believe that pattern initialization is too expensive for them,
and data might show that they're right. The only way to make these
programmers wrong is to offer zero-initialization as an option, figure out
where they are right, and optimize the compiler into submission. Until the
compiler provides acceptable performance for all security-minded code, zero
initialization is a useful (if blunt) tool.
I've been asked for a fourth initialization option: user-provided byte value.
This might be useful, and can easily be added later.
Why is an out-of band initialization mecanism desired? We could instead use
-Wuninitialized! Indeed we could, but then we're forcing the programmer to
provide semantics for something which doesn't actually have any (it's
uninitialized!). It's then unclear whether `int derp = 0;` lends meaning to `0`,
or whether it's just there to shut that warning up. It's also way easier to use
a compiler flag than it is to manually and intelligently initialize all values
in a program.
Why not just rely on static analysis? Because it cannot reason about all dynamic
code paths effectively, and it has false positives. It's a great tool, could get
even better, but it's simply incapable of catching all uses of uninitialized
values.
Why not just rely on memory sanitizer? Because it's not universally available,
has a 3x performance cost, and shouldn't be deployed in production. Again, it's
a great tool, it'll find the dynamic uses of uninitialized variables that your
test coverage hits, but it won't find the ones that you encounter in production.
What's the performance like? Not too bad! Previous publications [0] have cited
2.7 to 4.5% averages. We've commmitted a few patches over the last few months to
address specific regressions, both in code size and performance. In all cases,
the optimizations are generally useful, but variable initialization benefits
from them a lot more than regular code does. We've got a handful of other
optimizations in mind, but the code is in good enough shape and has found enough
latent issues that it's a good time to get the change reviewed, checked in, and
have others kick the tires. We'll continue reducing overheads as we try this out
on diverse codebases.
Is it a good idea? Security-minded folks think so, and apparently so does the
Microsoft Visual Studio team [1] who say "Between 2017 and mid 2018, this
feature would have killed 49 MSRC cases that involved uninitialized struct data
leaking across a trust boundary. It would have also mitigated a number of bugs
involving uninitialized struct data being used directly.". They seem to use pure
zero initialization, and claim to have taken the overheads down to within noise.
Don't just trust Microsoft though, here's another relevant person asking for
this [2]. It's been proposed for GCC [3] and LLVM [4] before.
What are the caveats? A few!
- Variables declared in unreachable code, and used later, aren't initialized.
This goto, Duff's device, other objectionable uses of switch. This should
instead be a hard-error in any serious codebase.
- Volatile stack variables are still weird. That's pre-existing, it's really
the language's fault and this patch keeps it weird. We should deprecate
volatile [5].
- As noted above, padding isn't fully handled yet.
I don't think these caveats make the patch untenable because they can be
addressed separately.
Should this be on by default? Maybe, in some circumstances. It's a conversation
we can have when we've tried it out sufficiently, and we're confident that we've
eliminated enough of the overheads that most codebases would want to opt-in.
Let's keep our precious undefined behavior until that point in time.
How do I use it:
1. On the command-line:
-ftrivial-auto-var-init=uninitialized (the default)
-ftrivial-auto-var-init=pattern
-ftrivial-auto-var-init=zero -enable-trivial-auto-var-init-zero-knowing-it-will-be-removed-from-clang
2. Using an attribute:
int dont_initialize_me __attribute((uninitialized));
[0]: https://users.elis.ugent.be/~jsartor/researchDocs/OOPSLA2011Zero-submit.pdf
[1]: https://twitter.com/JosephBialek/status/1062774315098112001
[2]: https://outflux.net/slides/2018/lss/danger.pdf
[3]: https://gcc.gnu.org/ml/gcc-patches/2014-06/msg00615.html
[4]: 776a0955ef
[5]: http://wg21.link/p1152
I've also posted an RFC to cfe-dev: http://lists.llvm.org/pipermail/cfe-dev/2018-November/060172.html
<rdar://problem/39131435>
Reviewers: pcc, kcc, rsmith
Subscribers: JDevlieghere, jkorous, dexonsmith, cfe-commits
Differential Revision: https://reviews.llvm.org/D54604
llvm-svn: 349442
pass in the -target-sdk-version to the compiler and backend
This commit adds support for reading the SDKSettings.json file in the Darwin
driver. This file is used by the driver to determine the SDK's version, and it
uses that information to pass it down to the compiler using the new
-target-sdk-version= option. This option is then used to set the appropriate
SDK Version module metadata introduced in r349119.
Note: I had to adjust the two ast tests as the SDKROOT environment variable
on macOS caused SDK version to be picked up for the compilation of source file
but not the AST.
rdar://45774000
Differential Revision: https://reviews.llvm.org/D55673
llvm-svn: 349380
Summary:
This patch adds `__builtin_launder`, which is required to implement `std::launder`. Additionally GCC provides `__builtin_launder`, so thing brings Clang in-line with GCC.
I'm not exactly sure what magic `__builtin_launder` requires, but based on previous discussions this patch applies a `@llvm.invariant.group.barrier`. As noted in previous discussions, this may not be enough to correctly handle vtables.
Reviewers: rnk, majnemer, rsmith
Reviewed By: rsmith
Subscribers: kristina, Romain-Geissler-1A, erichkeane, amharc, jroelofs, cfe-commits, Prazek
Differential Revision: https://reviews.llvm.org/D40218
llvm-svn: 349195
Inlined runtime with the current implementation of the interwarp copy
function leads to the undefined behavior because of the not quite
correct implementation of the barriers. Start using generic
__kmpc_barier function instead of the custom made barriers.
llvm-svn: 349192
Implement options in clang to enable recording the driver command-line
in an ELF section.
Implement a new special named metadata, llvm.commandline, to support
frontends embedding their command-line options in IR/ASM/ELF.
This differs from the GCC implementation in some key ways:
* In GCC there is only one command-line possible per compilation-unit,
in LLVM it mirrors llvm.ident and multiple are allowed.
* In GCC individual options are separated by NULL bytes, in LLVM entire
command-lines are separated by NULL bytes. The advantage of the GCC
approach is to clearly delineate options in the face of embedded
spaces. The advantage of the LLVM approach is to support merging
multiple command-lines unambiguously, while handling embedded spaces
with escaping.
Differential Revision: https://reviews.llvm.org/D54487
Clang Differential Revision: https://reviews.llvm.org/D54489
llvm-svn: 349155
intrin.h had forward declarations for these and lzcntintrin.h had implementations that were only available with -mlzcnt or a -march that supported the lzcnt feature.
For MS compatibility we should always have these builtins available regardless of X86 being the target or the CPU support the lzcnt instruction. The backends should be able to gracefully fallback to something support even if its just shifts and bit ops.
Unfortunately, gcc also implements 2 of the 3 function names here on X86 when lzcnt feature is enabled.
This patch adds builtins for these for MSVC compatibility and drops the forward declarations from intrin.h. To keep the gcc compatibility the two intrinsics that collided have been turned into macros that use the X86 specific builtins with the lzcnt feature check. These macros are only defined when _MSC_VER is not defined. Without them being macros we can get a redefinition error because -ms-extensions doesn't seem to set _MSC_VER but does make the MS builtins available.
Should fix PR40014
Differential Revision: https://reviews.llvm.org/D55677
llvm-svn: 349098
The host-side code can't (and should not) access the values that may
only exist on the device side. E.g. address of a __device__ function
does not exist on the host side as we don't generate the code for it there.
Differential Revision: https://reviews.llvm.org/D55663
llvm-svn: 349087
The DIFile used by the CU is special and distinct from the main source
file. Its directory part specifies what becomes the DW_AT_comp_dir
(the compilation directory), even if the source file was specified
with an absolute path.
To support the .dwo workflow, a valid DW_AT_comp_dir is necessary even
if source files were specified with an absolute path.
llvm-svn: 349065
Address spaces are cast into generic before invoking the constructor.
Added support for a trailing Qualifiers object in FunctionProtoType.
Note: This recommits the previously reverted patch,
but now it is commited together with a fix for lldb.
Differential Revision: https://reviews.llvm.org/D54862
llvm-svn: 349019
The previous assertion was relatively easy to trigger, and likely will
be easy to trigger going forward. EmitDelegateCallArg is relatively
popular.
This cleanly diagnoses PR28299 while I work on a proper solution.
llvm-svn: 348991
__builtin_cpu_supports and __builtin_cpu_is use information in __cpu_model to decide cpu features. Before this change, __cpu_model was not declared as dso local. The generated code looks up the address in GOT when reading __cpu_model. This makes it impossible to use these functions in ifunc, because at that time GOT entries have not been relocated. This change makes it dso local.
Differential Revision: https://reviews.llvm.org/D53850
llvm-svn: 348978
The __builtin_unpredictable implementation is confused by any implicit
casts, which happen in C++. This patch strips those off so that
if/switch statements now work with it in C++.
Change-Id: I73c3bf4f1775cd906703880944f4fcdc29fffb0a
llvm-svn: 348969
Address spaces are cast into generic before invoking the constructor.
Added support for a trailing Qualifiers object in FunctionProtoType.
Differential Revision: https://reviews.llvm.org/D54862
llvm-svn: 348927
for the DICompileUnit.
This addresses post-commit feedback for D55085. Without this patch, a
main source file with an absolute paths may appear in different
DIFiles, once with the absolute path and once with the common prefix
between the absolute path and the current working directory.
Differential Revision: https://reviews.llvm.org/D55519
llvm-svn: 348865
Summary:
If a function argument is byval and RV is located in default or alloca address space
an optimization of creating addrspacecast instead of memcpy is performed. That is
not correct for OpenCL, where that can lead to a situation of address space casting
from __private * to __global *. See an example below:
```
typedef struct {
int x;
} MyStruct;
void foo(MyStruct val) {}
kernel void KernelOneMember(__global MyStruct* x) {
foo (*x);
}
```
for this code clang generated following IR:
...
%0 = load %struct.MyStruct addrspace(1)*, %struct.MyStruct addrspace(1)**
%x.addr, align 4
%1 = addrspacecast %struct.MyStruct addrspace(1)* %0 to %struct.MyStruct*
...
So the optimization was disallowed for OpenCL if RV is located in an address space
different than that of the argument (0).
Reviewers: yaxunl, Anastasia
Reviewed By: Anastasia
Subscribers: cfe-commits, asavonic
Differential Revision: https://reviews.llvm.org/D54947
llvm-svn: 348752
The addcarry and addcarryx builtins do the same thing. The only difference is that addcarryx previously required adx feature.
This commit removes the adx feature check from addcarryx and removes the addcarry builtin. This matches the builtins that gcc has. We don't guarantee compatibility in builtins, but we generally try to be consistent if its not a burden.
llvm-svn: 348738
It is faster to directly call the ObjC runtime for methods such as alloc/allocWithZone instead of sending a message to those functions.
This patch adds support for converting messages to alloc/allocWithZone to their equivalent runtime calls.
Tests included for the positive case of applying this transformation, negative tests that we ensure we only convert "alloc" to objc_alloc, not "alloc2", and also a driver test to ensure we enable this only for supported runtime versions.
Reviewed By: rjmccall
https://reviews.llvm.org/D55349
llvm-svn: 348687
Inline cpu_specific versions referenced before the cpu_dispatch function
weren't properly emitted, since they hadn't been referred to. This
patch ensures that during resolver generation that all appropriate
versions are emitted.
Change-Id: I94c3766aaf9c75ca07a0ad8258efdbb834654ff8
llvm-svn: 348600
Thunks that return member pointers via sret are broken due to using temporary
storage for the return value on the stack and then passing that pointer to a
tail call, violating the rule that a tail call can't access allocas in the
caller (see bug).
Since r90526, we put aggregate return values directly in the sret slot, but
this doesn't apply to member pointers which are considered scalar.
Unless I'm missing something subtle, we should be able to always use the sret
slot directly for indirect return values.
Differential revision: https://reviews.llvm.org/D55371
llvm-svn: 348569
This reverts commit r348280 and reapplies D55085 without modifications.
Original commit message:
Avoid emitting redundant or unusable directories in DIFile metadata entries.
As discussed on llvm-dev recently, Clang currently emits redundant
directories in DIFile entries, such as
.file 1 "/Volumes/Data/llvm" "/Volumes/Data/llvm/tools/clang/test/CodeGen/debug-info-abspath.c"
This patch looks at any common prefix between the compilation
directory and the (absolute) file path and strips the redundant
part. More importantly it leaves the compilation directory empty if
the two paths have no common prefix.
After this patch the above entry is (assuming a compilation dir of "/Volumes/Data/llvm/_build"):
.file 1 "/Volumes/Data/llvm" "tools/clang/test/CodeGen/debug-info-abspath.c"
When building the FileCheck binary with debug info, this patch makes
the build artifacts ~1kb smaller.
Differential Revision: https://reviews.llvm.org/D55085
llvm-svn: 348513
If the array section is based on pointer and this sections is mapped in
target region + then it is used in the inner parallel region, it also
must be globalized as the pointer itself is passed by value, not by
reference.
llvm-svn: 348492
This adds a callback to PrintingPolicy to allow CGDebugInfo to remap
file paths according to -fdebug-prefix-map. Otherwise the debug info
(particularly function names for C++ lambdas) may contain paths that
should have been remapped in the debug info.
<rdar://problem/46128056>
Differential Revision: https://reviews.llvm.org/D55137
llvm-svn: 348397
This reverts commit r348154 and follow-up commits r348211 and r3248213.
Reason: the original commit broke compiler-rt tests and a follow-up fix
(r348203) broke our integrate and was reverted.
llvm-svn: 348280
Critical regions in NVPTX are the constructs, which, generally speaking,
are not supported by the NVPTX target. Instead we're using special
technique to handle the critical regions. Currently they are supported
only within the loop and all the threads in the loop must execute the
same critical region.
Inside of this special regions the regions still must be emitted as
critical, to avoid possible data races between the teams +
synchronization must use __kmpc_barrier functions.
llvm-svn: 348272
__kmpc_barrier runtime functions must be marked as convergent to prevent
some dangerous optimizations. Also, for NVPTX target all barriers must
be emitted as simple barriers.
llvm-svn: 348271
As discussed on llvm-dev recently, Clang currently emits redundant
directories in DIFile entries, such as
.file 1 "/Volumes/Data/llvm" "/Volumes/Data/llvm/tools/clang/test/CodeGen/debug-info-abspath.c"
This patch looks at any common prefix between the compilation
directory and the (absolute) file path and strips the redundant
part. More importantly it leaves the compilation directory empty if
the two paths have no common prefix.
After this patch the above entry is (assuming a compilation dir of "/Volumes/Data/llvm/_build"):
.file 1 "/Volumes/Data/llvm" "tools/clang/test/CodeGen/debug-info-abspath.c"
When building the FileCheck binary with debug info, this patch makes
the build artifacts ~1kb smaller.
Differential Revision: https://reviews.llvm.org/D55085
llvm-svn: 348154
This adds a callback to PrintingPolicy to allow CGDebugInfo to remap
file paths according to -fdebug-prefix-map. Otherwise the debug info
(particularly function names for C++ lambdas) may contain paths that
should have been remapped in the debug info.
<rdar://problem/46128056>
Differential Revision: https://reviews.llvm.org/D55137
llvm-svn: 348060
It seems the two failing tests can be simply fixed after r348037
Fix 3 cases in Analysis/builtin-functions.cpp
Delete the bad CodeGen/builtin-constant-p.c for now
llvm-svn: 348053
Kept the "indirect_builtin_constant_p" test case in test/SemaCXX/constant-expression-cxx1y.cpp
while we are investigating why the following snippet fails:
extern char extern_var;
struct { int a; } a = {__builtin_constant_p(extern_var)};
llvm-svn: 348039