processFixupValue is called on every relaxation iteration. applyFixup
is only called once at the very end. applyFixup is then the correct
place to do last minute changes and value checks.
While here, do proper range checks again for fixup_arm_thumb_bl. We
used to do it, but dropped because of thumb2. We now do it again, but
use the thumb2 range.
llvm-svn: 306177
I did this a long time ago with a janky python script, but now
clang-format has built-in support for this. I fed clang-format every
line with a #include and let it re-sort things according to the precise
LLVM rules for include ordering baked into clang-format these days.
I've reverted a number of files where the results of sorting includes
isn't healthy. Either places where we have legacy code relying on
particular include ordering (where possible, I'll fix these separately)
or where we have particular formatting around #include lines that
I didn't want to disturb in this patch.
This patch is *entirely* mechanical. If you get merge conflicts or
anything, just ignore the changes in this patch and run clang-format
over your #include lines in the files.
Sorry for any noise here, but it is important to keep these things
stable. I was seeing an increasing number of patches with irrelevant
re-ordering of #include lines because clang-format was used. This patch
at least isolates that churn, makes it easy to skip when resolving
conflicts, and gets us to a clean baseline (again).
llvm-svn: 304787
TargetPassConfig is not useful for targets that do not use the CodeGen
library, so we may just as well store a pointer to an
LLVMTargetMachine instead of just to a TargetMachine.
While at it, also change the constructor to take a reference instead of a
pointer as the TM must not be nullptr.
llvm-svn: 304247
A number of backends (AArch64, MIPS, ARM) have been using
MCContext::reportError to report issues such as out-of-range fixup values in
their TgtAsmBackend. This is great, but because MCContext couldn't easily be
threaded through to the adjustFixupValue helper function from its usual
callsite (applyFixup), these backends ended up adding an MCContext* argument
and adding another call to applyFixup to processFixupValue. Adding an
MCContext parameter to applyFixup makes this unnecessary, and even better -
applyFixup can take a reference to MCContext rather than a potentially null
pointer.
Differential Revision: https://reviews.llvm.org/D30264
llvm-svn: 299529
This is enough to compile and link but doesn't yet do anything particularly
useful. Once an ASM parser and printer are added in the next two patches, the
whole thing can be usefully tested.
Differential Revision: https://reviews.llvm.org/D23562
llvm-svn: 285770
For now, only add instruction definitions for basic ALU operations. Our
initial target is a working MC layer rather than codegen, so appropriate
SelectionDAG patterns will come later.
Differential Revision: https://reviews.llvm.org/D23561
llvm-svn: 285769
This contains just enough for lib/Target/RISCV to compile. Notably a basic
RISCVTargetMachine and RISCVTargetInfo. At this point you can attempt llc
-march=riscv32 myinput.ll and will find it fails due to the lack of
MCAsmInfo.
See http://lists.llvm.org/pipermail/llvm-dev/2016-August/103748.html for
further discussion
Differential Revision: https://reviews.llvm.org/D23560
llvm-svn: 285712