We can't construct a working unique_function from an object that's not callable
with the right types, so don't allow deduction to succeed.
This avoids some ambiguous conversion cases, e.g. allowing to overload
on different unique_function types, and to conversion operators to
unique_function.
std::function and the any_invocable proposal have these.
This was added to llvm::function_ref in D88901 and followups
Differential Revision: https://reviews.llvm.org/D96794
The GPUDivergenceAnalysis is now renamed to just "DivergenceAnalysis"
since there is no conflict with LegacyDivergenceAnalysis. In the
legacy PM, this analysis can only be used through the legacy DA
serving as a wrapper. It is now made available as a pass in the new
PM, and has no relation with the legacy DA.
The new DA currently cannot handle irreducible control flow; its
presence can cause the analysis to run indefinitely. The analysis is
now modified to detect this and report all instructions in the
function as divergent. This is super conservative, but allows the
analysis to be used without hanging the compiler.
Reviewed By: aeubanks
Differential Revision: https://reviews.llvm.org/D96615
This commit fixes how metadata is handled in CloneModule to be sound,
and improves how it's handled in CloneFunctionInto (although the latter
is still awkward when called within a module).
Ruiling Song pointed out in PR48841 that CloneModule was changed to
unsoundly use the RF_ReuseAndMutateDistinctMDs flag (renamed in
fa35c1f80f for clarity). This flag papered
over a crash caused by other various changes made to CloneFunctionInto
over the past few years that made it unsound to use cloning between
different modules.
(This commit partially addresses PR48841, fixing the repro from
preprocessed source but not textual IR. MDNodeMapper::mapDistinctNode
became unsound in df763188c9 and this
commit does not address that regression.)
RF_ReuseAndMutateDistinctMDs is designed for the IRMover to use,
avoiding unnecessary clones of all referenced metadata when linking
between modules (with IRMover, the source module is discarded after
linking). It never makes sense to use when you're not discarding the
source. This commit drops its incorrect use in CloneModule.
Sadly, the right thing to do with metadata when cloning a function is
complicated, and this patch doesn't totally fix it.
The first problem is that there are two different types of referenceable
metadata and it's not obvious what to with one of them when remapping.
- `!0 = !{!1}` is metadata's version of a constant. Programatically it's
called "uniqued" (probably a better term would be "constant") because,
like `ConstantArray`, it's stored in uniquing tables. Once it's
constructed, it's illegal to change its arguments.
- `!0 = distinct !{!1}` is a bit closer to a global variable. It's legal
to change the operands after construction.
What should be done with distinct metadata when cloning functions within
the same module?
- Should new, cloned nodes be created?
- Should all references point to the same, old nodes?
The answer depends on whether that metadata is effectively owned by a
function.
And that's the second problem. Referenceable metadata's ownership model
is not clear or explicit. Technically, it's all stored on an
LLVMContext. However, any metadata that is `distinct`, that transitively
references a `distinct` node, or that transitively references a
GlobalValue is specific to a Module and is effectively owned by it. More
specifically, some metadata is effectively owned by a specific Function
within a module.
Effectively function-local metadata was introduced somewhere around
c10d0e5ccd, which made it illegal for two
functions to share a DISubprogram attachment.
When cloning a function within a module, you need to clone the
function-local debug info and suppress cloning of global debug info (the
status quo suppresses cloning some global debug info but not all). When
cloning a function to a new/different module, you need to clone all of
the debug info.
Here's what I think we should do (eventually? soon? not this patch
though):
- Distinguish explicitly (somehow) between pure constant metadata owned
by the LLVMContext, global metadata owned by the Module, and local
metadata owned by a GlobalValue (such as a function).
- Update CloneFunctionInto to trigger cloning of all "local" metadata
(only), perhaps by adding a bit to RemapFlag. Alternatively, split
out a separate function CloneFunctionMetadataInto to prime the
metadata map that callers are updated to call ahead of time as
appropriate.
Here's the somewhat more isolated fix in this patch:
- Converted the `ModuleLevelChanges` parameter to `CloneFunctionInto` to
an enum called `CloneFunctionChangeType` that is one of
LocalChangesOnly, GlobalChanges, DifferentModule, and ClonedModule.
- The code maintaining the "functions uniquely own subprograms"
invariant is now only active in the first two cases, where a function
is being cloned within a single module. That's necessary because this
code inhibits cloning of (some) "global" metadata that's effectively
owned by the module.
- The code maintaining the "all compile units must be explicitly
referenced by !llvm.dbg.cu" invariant is now only active in the
DifferentModule case, where a function is being cloned into a new
module in isolation.
- CoroSplit.cpp's call to CloneFunctionInto in CoroCloner::create
uses LocalChangeOnly, since fa635d730f
only set `ModuleLevelChanges` to trigger cloning of local metadata.
- CloneModule drops its unsound use of RF_ReuseAndMutateDistinctMDs
and special handling of !llvm.dbg.cu.
- Fixed some outdated header docs and left a couple of FIXMEs.
Differential Revision: https://reviews.llvm.org/D96531
Adds an *unaudited* SHA-256 implementation to `llvm/Support`. The ongoing lld-macho effort needs this to emit an adhoc code signature for macho files on macOS Big Sur.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D96540
Some of these accidentally disabled tests failed as a result; updated
tests per @qcolombet instructions. A small number needed additional
updates because legalization has actually changed since they were
written.
Found by the Rotten Green Tests project.
Differential Revision: https://reviews.llvm.org/D95257
The individual recipes have been updated to manage their operands using
VPUser a while back. Now that the transition is done, we can instead
make VPRecipeBase a VPUser and get rid of the toVPUser helper.
Rename the `RF_MoveDistinctMDs` flag passed into `MapValue` and
`MapMetadata` to `RF_ReuseAndMutateDistinctMDs` in order to more
precisely describe its effect and clarify the header documentation.
Found this while helping to investigate PR48841, which pointed out an
unsound use of the flag in `CloneModule()`. For now I've just added a
FIXME there, but I'm hopeful that the new (more precise) name will
prevent other similar errors.
This attempts to move all tools over to using `add_llvm_library` for
better consistency. After doing this, I noticed it ended up as nearly a
reimplementation of https://reviews.llvm.org/rL342148, which later got
reverted in r342336 (b09a8c9bd9).
With ccache and ninja on a large core machine (40), I haven't run into
build errors, so I'm hopeful it's better now, though it doesn't seem to
be any different / new.
Reviewed By: stephenneuendorffer
Differential Revision: https://reviews.llvm.org/D90970
We implement getHostCPUName() for AIX via systemcfg interfaces since access to the processor version register is a privileged operation. We return a value based on the current processor implementation mode.
This fixes the cpu detection used by clang for `-mcpu=native`.
Reviewed By: hubert.reinterpretcast
Differential Revision: https://reviews.llvm.org/D95966
Currently, the SmallPtrSet type allows inserting elements but it does
not support inserting elements with a positional hint. The lack of this
signature means that you cannot use SmallPtrSet with
std::insert_iterator or std::inserter(), which makes some code
constructs more awkward. This adds an overload of insert() that can be
used in these scenarios.
The positional hint is unused by SmallPtrSet and the call is equivalent
to calling insert() without a hint.
As mentioned in TODO comment, casting double to float causes NaNs to change bits.
To avoid the change, this patch adds support for single-floating-point immediate value on MachineCode.
Patch by Yuta Saito.
Differential Revision: https://reviews.llvm.org/D77384
The operator< in the previous attempt was incorrect. It is unfortunate
that this was only caught by the expensive checks.
This reverts commit ff1147c363.
As noted in https://reviews.llvm.org/D93459, the formatting of
multi-line descriptions of clEnumValN and the likes is unfavorable.
Thus this patch adds support for correctly indenting these.
Reviewed By: serge-sans-paille
Differential Revision: https://reviews.llvm.org/D93494
This change compresses the context string by removing cycles due to recursive function for CS profile generation. Removing recursion cycles is a way to normalize the calling context which will be better for the sample aggregation and also make the context promoting deterministic.
Specifically for implementation, we recognize adjacent repeated frames as cycles and deduplicated them through multiple round of iteration.
For example:
Considering a input context string stack:
[“a”, “a”, “b”, “c”, “a”, “b”, “c”, “b”, “c”, “d”]
For first iteration,, it removed all adjacent repeated frames of size 1:
[“a”, “b”, “c”, “a”, “b”, “c”, “b”, “c”, “d”]
For second iteration, it removed all adjacent repeated frames of size 2:
[“a”, “b”, “c”, “a”, “b”, “c”, “d”]
So in the end, we get compressed output:
[“a”, “b”, “c”, “d”]
Compression will be called in two place: one for sample's context key right after unwinding, one is for the eventual context string id in the ProfileGenerator.
Added a switch `compress-recursion` to control the size of duplicated frames, default -1 means no size limit.
Added unit tests and regression test for this.
Differential Revision: https://reviews.llvm.org/D93556
This change compresses the context string by removing cycles due to recursive function for CS profile generation. Removing recursion cycles is a way to normalize the calling context which will be better for the sample aggregation and also make the context promoting deterministic.
Specifically for implementation, we recognize adjacent repeated frames as cycles and deduplicated them through multiple round of iteration.
For example:
Considering a input context string stack:
[“a”, “a”, “b”, “c”, “a”, “b”, “c”, “b”, “c”, “d”]
For first iteration,, it removed all adjacent repeated frames of size 1:
[“a”, “b”, “c”, “a”, “b”, “c”, “b”, “c”, “d”]
For second iteration, it removed all adjacent repeated frames of size 2:
[“a”, “b”, “c”, “a”, “b”, “c”, “d”]
So in the end, we get compressed output:
[“a”, “b”, “c”, “d”]
Compression will be called in two place: one for sample's context key right after unwinding, one is for the eventual context string id in the ProfileGenerator.
Added a switch `compress-recursion` to control the size of duplicated frames, default -1 means no size limit.
Added unit tests and regression test for this.
Differential Revision: https://reviews.llvm.org/D93556
The collapseLoops method implements a transformations facilitating the implementation of the collapse-clause. It takes a list of loops from a loop nest and reduces it to a single loop that can be used by other methods that are implemented on just a single loop, such as createStaticWorkshareLoop.
This patch shares some changes with D92974 (such as adding some getters to CanonicalLoopNest), used by both patches.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D93268
Previously we'd hit UB due to an invalid left shift operand.
Also fix the WASM emitter to properly use SLEB128 encoding instead of
ULEB128 encoding for signed fields so that negative numbers don't
result in overly-large values that we can't read back any more.
In passing, don't diagnose a non-canonical ULEB128 that fits in a uint64_t but
has redundant trailing zero bytes.
Reviewed By: dblaikie, aardappel
Differential Revision: https://reviews.llvm.org/D95510
Previously, operator== would consider the actual equality of the pairs
(lhs.Value, lhs.State) == (rhs.Value, rhs.State). However, if an invalid
cost was involved in a call to operator<, only the state would be
compared. Thus, it was not the case that ({2, Invalid} < {3, Invalid} ||
{2, Invalid} > {3, Invalid} || {2, Invalid} == {3, Invalid}).
This patch implements a true total ordering, where cost state is
considered first, then value. While it's not really imporant that
{2, Invalid} be considered to be less than {3, Invalid}, it's not a
problem either. This patch also implements operator== in terms of
operator<, so the two definitions will be kept in sync.
Reviewed By: sdesmalen
Differential Revision: https://reviews.llvm.org/D95803
Previously file entries in the -ivfsoverlay yaml could map to a file in the
external file system, but directories had to list their contents in the form of
other file entries or directories. Allowing directory entries to map to a
directory in the external file system makes it possible to present an external
directory's contents in a different location and (in combination with the
'fallthrough' option) overlay one directory's contents on top of another.
rdar://problem/72485443
Differential Revision: https://reviews.llvm.org/D94844
To set non-default rounding mode user usually calls function 'fesetround'
from standard C library. This way has some disadvantages.
* It creates unnecessary dependency on libc. On the other hand, setting
rounding mode requires few instructions and could be made by compiler.
Sometimes standard C library even is not available, like in the case of
GPU or AI cores that execute small kernels.
* Compiler could generate more effective code if it knows that a particular
call just sets rounding mode.
This change introduces new IR intrinsic, namely 'llvm.set.rounding', which
sets current rounding mode, similar to 'fesetround'. It however differs
from the latter, because it is a lower level facility:
* 'llvm.set.rounding' does not return any value, whereas 'fesetround'
returns non-zero value in the case of failure. In glibc 'fesetround'
reports failure if its argument is invalid or unsupported or if floating
point operations are unavailable on the hardware. Compiler usually knows
what core it generates code for and it can validate arguments in many
cases.
* Rounding mode is specified in 'fesetround' using constants like
'FE_TONEAREST', which are target dependent. It is inconvenient to work
with such constants at IR level.
C standard provides a target-independent way to specify rounding mode, it
is used in FLT_ROUNDS, however it does not define standard way to set
rounding mode using this encoding.
This change implements only IR intrinsic. Lowering it to machine code is
target-specific and will be implemented latter. Mapping of 'fesetround'
to 'llvm.set.rounding' is also not implemented here.
Differential Revision: https://reviews.llvm.org/D74729
It's the same as the ZEXT/TRUNC case, except SrcBitWidth is given by the
immediate operand.
Update KnownBitsTest.cpp and a MIR test for a concrete example.
Differential Revision: https://reviews.llvm.org/D95566
Add an `enable_if` to the generic `IntrusiveRefCntPtr` constructors so
that std::is_convertible gives an honest answer when the underlying
pointers cannot be converted. Added `static_assert`s to the test suite
to verify.
Also combine generic constructors from `IntrusiveRefCntPtr<X>&&` and
`const IntrusiveRefCntPtr<X>&`. At first glance this appears to be an
infinite loop, but the real copy/move constructors are spelled out
separately above. Added a unit test to verify.
Differential Revision: https://reviews.llvm.org/D95498
These are widened to a wider UADDE/USUBE, with the overflow value
unused, and with the same synthesis of a new overflow value as for the
O operations.
Reviewed By: paquette
Differential Revision: https://reviews.llvm.org/D95326
This patch adds the ability to evaluate the state machine for CIE and FDE unwind objects and produce a UnwindTable with all UnwindRow objects needed to unwind registers. It will also dump the UnwindTable for each CIE and FDE when dumping DWARF .debug_frame or .eh_frame sections in llvm-dwarfdump or llvm-objdump. This allows users to see what the unwind rows actually look like for a given CIE or FDE instead of just seeing a list of opcodes.
This patch adds new classes: UnwindLocation, RegisterLocations, UnwindRow, and UnwindTable.
UnwindLocation is a class that describes how to unwind a register or Call Frame Address (CFA).
RegisterLocations is a class that tracks registers and their UnwindLocations. It gets populated when parsing the DWARF call frame instruction opcodes for a unwind row. The registers are mapped from their register numbers to the UnwindLocation in a map.
UnwindRow contains the result of evaluating a row of DWARF call frame instructions for the CIE, or a row from a FDE. The CIE can produce a set of initial instructions that each FDE that points to that CIE will use as the seed for the state machine when parsing FDE opcodes. A UnwindRow for a CIE will not have a valid address, whille a UnwindRow for a FDE will have a valid address.
The UnwindTable is a class that contains a sorted (by address) vector of UnwindRow objects and is the result of parsing all opcodes in a CIE, or FDE. Parsing a CIE should produce a UnwindTable with a single row. Parsing a FDE will produce a UnwindTable with one or more UnwindRow objects where all UnwindRow objects have valid addresses. The rows in the UnwindTable will be sorted from lowest Address to highest after parsing the state machine, or an error will be returned if the table isn't sorted. To parse a UnwindTable clients can use the following methods:
static Expected<UnwindTable> UnwindTable::create(const CIE *Cie);
static Expected<UnwindTable> UnwindTable::create(const FDE *Fde);
A valid table will be returned if the DWARF call frame instruction opcodes have no encoding errors. There are a few things that can go wrong during the evaluation of the state machine and these create functions will catch and return them.
Differential Revision: https://reviews.llvm.org/D89845
I am trying to untangle the fast-math-flags propagation logic
in the vectorizers (see a6f022127 for SLP).
The loop vectorizer has a mix of checking FP function attributes,
IR-level FMF, and just wrong assumptions.
I am trying to avoid regressions while fixing this, and I think
the IR-level logic is good enough for that, but it's hard to say
for sure. This would be the 1st step in the clean-up.
The existing test that I changed to include 'fast' actually shows
a miscompile: the function only had the equivalent of nnan, but we
created new instructions that had fast (all FMF set). This is
similar to the example in https://llvm.org/PR35538
Differential Revision: https://reviews.llvm.org/D95452
Just use the existing `Known.sextInReg` implementation.
- Update KnownBitsTest.cpp.
- Update combine-redundant-and.mir for a more concrete example.
Differential Revision: https://reviews.llvm.org/D95484
To be able to refer to constant keypaths (e.g. `defvar cplusplus = LangOpts<"CPlusPlus">`) inside `ImpliedByAnyOf`, let's accept strings instead of `Option` instances.
This somewhat weakens the guarantees that we're referring to an existing (option) record, but we can still use the option.KeyPath syntax to simulate this.
Reviewed By: dexonsmith
Differential Revision: https://reviews.llvm.org/D95344
Refactor the duplicated canonicalize-path logic in `FileCollector` and
`ModulesDependencyCollector` into a new utility called
`PathCanonicalizer` that's shared. This popped up when tracking down a
bug common to both in https://reviews.llvm.org/D95202.
As drive-bys, update a few names and comments to better reflect the
effect of the code, delay removal of `..`s to avoid an unnecessary extra
string copy, and leave behind a couple of FIXMEs for future
consideration.
Differential Revision: https://reviews.llvm.org/D95279
Don't emit an output dash for an empty sequence. Take emitting a vector
of strings for example:
std::vector<std::string> Strings = {"foo", "bar"};
LLVM_YAML_IS_SEQUENCE_VECTOR(std::string)
yout << Strings;
This emits the following YAML document.
---
- foo
- bar
...
When the vector is empty, this generates the following result:
---
- []
...
Although this is valid YAML, it does not match what we meant to emit.
The result is a one-element sequence consisting of an empty list.
Indeed, if we were to try to read this again we get an error:
YAML:2:4: error: not a mapping
- []
The problem is the output dash before the empty list. The correct output
would be:
---
[]
...
This patch fixes that by not emitting the output dash for an empty
sequence.
Differential revision: https://reviews.llvm.org/D95280
This is similar to D94106, but for the
isGuaranteedToTransferExecutionToSuccessor() helper. We should not
assume that readonly functions will return, as this is only true for
mustprogress functions (in which case we already infer willreturn).
As with the DCE change, for now continue assuming that readonly
intrinsics will return, as not all target intrinsics have been
annotated yet.
Differential Revision: https://reviews.llvm.org/D95288
The tileLoops method implements the code generation part of the tile directive introduced in OpenMP 5.1. It takes a list of loops forming a loop nest, tiles it, and returns the CanonicalLoopInfo representing the generated loops.
The implementation takes n CanonicalLoopInfos, n tile size Values and returns 2*n new CanonicalLoopInfos. The input CanonicalLoopInfos are invalidated and BBs not reused in the new loop nest removed from the function.
In a modified version of D76342, I was able to correctly compile and execute a tiled loop nest.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D92974
This patch adds a new InstModificationIRStrategy to mutate flags/options
for instructions. For example, it may add or remove nuw/nsw flags from
add, mul, sub, shl instructions or change the predicate for icmp
instructions.
Subtle changes such as those mentioned above should lead to a more
interesting range of inputs. The presence or absence of overflow flags
can expose subtle bugs, for example.
Reviewed By: bogner
Differential Revision: https://reviews.llvm.org/D94905
Rather than reimplement, use a `using` declaration to bring in
`SmallVectorImpl<char>`'s assign and append implementations in
`SmallString`.
The `SmallString` versions were missing reference invalidation
assertions from `SmallVector`. This patch also fixes a bug in
`llvm::FileCollector::addFileImpl`, which was a copy/paste from
`clang::ModuleDependencyCollector::copyToRoot`, both caught by the
no-longer-skipped assertions.
As a drive-by, this also sinks the `const SmallVectorImpl&` versions of
these methods down into `SmallVectorImpl`, since I imagine they'd be
useful elsewhere.
Differential Revision: https://reviews.llvm.org/D95202
This patch addresses inconsistencies in the way fallthrough is handled
in the RedirectingFileSystem. Rather than trying to change the working
directory of the external filesystem, the RedirectingFileSystem will
canonicalize every path before handing it down. This guarantees that
relative paths are resolved relative to the RedirectingFileSystem's
working directory.
This allows us to have a strictly virtual working directory, and still
fallthrough for absolute paths, but not for relative paths that would
get resolved incorrectly at the lower layer (for example, in case of the
RealFileSystem, because the strictly virtual path does not exist).
Differential revision: https://reviews.llvm.org/D95188
The widenScalar implementation for signed and unsigned overflowing
operations were very similar: both are checked by truncating the result
and then re-sign/zero-extending it and checking that it matches the
computed operation.
Using a truncate + zero-extend for the unsigned case instead of manually
producing the AND instruction like before leads to an extra copy
instruction during legalization, but this should be harmless.
Differential Revision: https://reviews.llvm.org/D95035
This is to support the memory routines vec_malloc, vec_calloc, vec_realloc, and vec_free. These routines manage memory that is 16-byte aligned. And they are only available on AIX.
Differential Revision: https://reviews.llvm.org/D94710