This is an optimized approach for D94155.
Previous code build the model that tile config register is the user of
each AMX instruction. There is a problem for the tile config register
spill. When across function, the ldtilecfg instruction may be inserted
on each AMX instruction which use tile config register. This cause all
tile data register clobber.
To fix this issue, we remove the model of tile config register. Instead,
we analyze the AMX instructions between one call to another. We will
insert ldtilecfg after the first call if we find any AMX instructions.
Reviewed By: LuoYuanke
Differential Revision: https://reviews.llvm.org/D95136
The unwind info format requires that all adjustments are 8 byte aligned,
and the bottom three bits are masked out. Most Win64 calling conventions
have 32 bytes of shadow stack space for spilling parameters, and I
believe that constructing these fixed stack objects had the side effect
of ensuring an alignment of 8. However, the Intel regcall convention
does not have this shadow space, so when using that convention, it was
possible to make a 4 byte stack frame, which was impossible to describe
with unwind info.
Fixes pr48867
Previous code build the model that tile config register is the user of
each AMX instruction. There is a problem for the tile config register
spill. When across function, the ldtilecfg instruction may be inserted
on each AMX instruction which use tile config register. This cause all
tile data register clobber.
To fix this issue, we remove the model of tile config register. We
analyze the regmask of call instruction and insert ldtilecfg if there is
any tile data register live across the call. Inserting the sttilecfg
before the call is unneccessary, because the tile config doesn't change
and we can just reload the config.
Besides we also need check tile config register interference. Since we
don't model the config register we should check interference from the
ldtilecfg to each tile data register def.
ldtilecfg
/ \
BB1 BB2
/ \
call BB3
/ \
%1=tileload %2=tilezero
We can start from the instruction of each tile def, and backward to
ldtilecfg. If there is any call instruction, and tile data register is
not preserved, we should insert ldtilecfg after the call instruction.
Differential Revision: https://reviews.llvm.org/D94155
This patch implements amx programming model that discussed in llvm-dev
(http://lists.llvm.org/pipermail/llvm-dev/2020-August/144302.html).
Thank Hal for the good suggestion in the RA. The fast RA is not in the patch yet.
This patch implemeted 7 components.
1. The c interface to end user.
2. The AMX intrinsics in LLVM IR.
3. Transform load/store <256 x i32> to AMX intrinsics or split the
type into two <128 x i32>.
4. The Lowering from AMX intrinsics to AMX pseudo instruction.
5. Insert psuedo ldtilecfg and build the def-use between ldtilecfg to amx
intruction.
6. The register allocation for tile register.
7. Morph AMX pseudo instruction to AMX real instruction.
Change-Id: I935e1080916ffcb72af54c2c83faa8b2e97d5cb0
Differential Revision: https://reviews.llvm.org/D87981
To accommodate frame layouts that have both fixed and scalable objects
on the stack, describing a stack location or offset using a pointer + uint64_t
is not sufficient. For this reason, we've introduced the StackOffset class,
which models both the fixed- and scalable sized offsets.
The TargetFrameLowering::getFrameIndexReference is made to return a StackOffset,
so that this can be used in other interfaces, such as to eliminate frame indices
in PEI or to emit Debug locations for variables on the stack.
This patch is purely mechanical and doesn't change the behaviour of how
the result of this function is used for fixed-sized offsets. The patch adds
various checks to assert that the offset has no scalable component, as frame
offsets with a scalable component are not yet supported in various places.
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D90018
The current compact unwind scheme does not work when the prologue is not at the
start (the instructions before the prologue cannot be described). (Technically
this is fixable, but it requires multiple compact unwind descriptors for one
function.)
rL255175 chose to not perform shrink-wrapping for no-frame-pointer functions not
marked as nounwind to work around PR25614. This is overly limited, as platforms
not supporting compact unwind (all non-Darwin) does not need the workaround.
This patch restricts the limitation to compact unwind platforms.
Reviewed By: qcolombet
Differential Revision: https://reviews.llvm.org/D89930
This patch handles CFI with basic block sections, which unlike DebugInfo does
not support ranges. The DWARF standard explicitly requires emitting separate
CFI Frame Descriptor Entries for each contiguous fragment of a function. Thus,
the CFI information for all callee-saved registers (possibly including the
frame pointer, if necessary) have to be emitted along with redefining the
Call Frame Address (CFA), viz. where the current frame starts.
CFI directives are emitted in FDE’s in the object file with a low_pc, high_pc
specification. So, a single FDE must point to a contiguous code region unlike
debug info which has the support for ranges. This is what complicates CFI for
basic block sections.
Now, what happens when we start placing individual basic blocks in unique
sections:
* Basic block sections allow the linker to randomly reorder basic blocks in the
address space such that a given basic block can become non-contiguous with the
original function.
* The different basic block sections can no longer share the cfi_startproc and
cfi_endproc directives. So, each basic block section should emit this
independently.
* Each (cfi_startproc, cfi_endproc) directive will result in a new FDE that
caters to that basic block section.
* Now, this basic block section needs to duplicate the information from the
entry block to compute the CFA as it is an independent entity. It cannot refer
to the FDE of the original function and hence must duplicate all the stuff that
is needed to compute the CFA on its own.
* We are working on a de-duplication patch that can share common information in
FDEs in a CIE (Common Information Entry) and we will present this as a follow up
patch. This can significantly reduce the duplication overhead and is
particularly useful when several basic block sections are created.
* The CFI directives are emitted similarly for registers that are pushed onto
the stack, like callee saved registers in the prologue. There are cfi
directives that emit how to retrieve the value of the register at that point
when the push happened. This has to be duplicated too in a basic block that is
floated as a separate section.
Differential Revision: https://reviews.llvm.org/D79978
Instead of using a fake call and metadata to temporarily represent a probed
static alloca, use a pseudo instruction.
This is inspired by the SystemZ approach proposed in https://reviews.llvm.org/D78717.
Differential Revision: https://reviews.llvm.org/D80641
- test both 32 and 64 bit version
- probe the tail in dynamic-alloca
- generate more concise code
Differential Revision: https://reviews.llvm.org/D79482
See https://reviews.llvm.org/D74651 for the preallocated IR constructs
and LangRef changes.
In X86TargetLowering::LowerCall(), if a call is preallocated, record
each argument's offset from the stack pointer and the total stack
adjustment. Associate the call Value with an integer index. Store the
info in X86MachineFunctionInfo with the integer index as the key.
This adds two new target independent ISDOpcodes and two new target
dependent Opcodes corresponding to @llvm.call.preallocated.{setup,arg}.
The setup ISelDAG node takes in a chain and outputs a chain and a
SrcValue of the preallocated call Value. It is lowered to a target
dependent node with the SrcValue replaced with the integer index key by
looking in X86MachineFunctionInfo. In
X86TargetLowering::EmitInstrWithCustomInserter() this is lowered to an
%esp adjustment, the exact amount determined by looking in
X86MachineFunctionInfo with the integer index key.
The arg ISelDAG node takes in a chain, a SrcValue of the preallocated
call Value, and the arg index int constant. It produces a chain and the
pointer fo the arg. It is lowered to a target dependent node with the
SrcValue replaced with the integer index key by looking in
X86MachineFunctionInfo. In
X86TargetLowering::EmitInstrWithCustomInserter() this is lowered to a
lea of the stack pointer plus an offset determined by looking in
X86MachineFunctionInfo with the integer index key.
Force any function containing a preallocated call to use the frame
pointer.
Does not yet handle a setup without a call, or a conditional call.
Does not yet handle musttail. That requires a LangRef change first.
Tried to look at all references to inalloca and see if they apply to
preallocated. I've made preallocated versions of tests testing inalloca
whenever possible and when they make sense (e.g. not alloca related,
inalloca edge cases).
Aside from the tests added here, I checked that this codegen produces
correct code for something like
```
struct A {
A();
A(A&&);
~A();
};
void bar() {
foo(foo(foo(foo(foo(A(), 4), 5), 6), 7), 8);
}
```
by replacing the inalloca version of the .ll file with the appropriate
preallocated code. Running the executable produces the same results as
using the current inalloca implementation.
Reverted due to unexpectedly passing tests, added REQUIRES: asserts for reland.
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77689
See https://reviews.llvm.org/D74651 for the preallocated IR constructs
and LangRef changes.
In X86TargetLowering::LowerCall(), if a call is preallocated, record
each argument's offset from the stack pointer and the total stack
adjustment. Associate the call Value with an integer index. Store the
info in X86MachineFunctionInfo with the integer index as the key.
This adds two new target independent ISDOpcodes and two new target
dependent Opcodes corresponding to @llvm.call.preallocated.{setup,arg}.
The setup ISelDAG node takes in a chain and outputs a chain and a
SrcValue of the preallocated call Value. It is lowered to a target
dependent node with the SrcValue replaced with the integer index key by
looking in X86MachineFunctionInfo. In
X86TargetLowering::EmitInstrWithCustomInserter() this is lowered to an
%esp adjustment, the exact amount determined by looking in
X86MachineFunctionInfo with the integer index key.
The arg ISelDAG node takes in a chain, a SrcValue of the preallocated
call Value, and the arg index int constant. It produces a chain and the
pointer fo the arg. It is lowered to a target dependent node with the
SrcValue replaced with the integer index key by looking in
X86MachineFunctionInfo. In
X86TargetLowering::EmitInstrWithCustomInserter() this is lowered to a
lea of the stack pointer plus an offset determined by looking in
X86MachineFunctionInfo with the integer index key.
Force any function containing a preallocated call to use the frame
pointer.
Does not yet handle a setup without a call, or a conditional call.
Does not yet handle musttail. That requires a LangRef change first.
Tried to look at all references to inalloca and see if they apply to
preallocated. I've made preallocated versions of tests testing inalloca
whenever possible and when they make sense (e.g. not alloca related,
inalloca edge cases).
Aside from the tests added here, I checked that this codegen produces
correct code for something like
```
struct A {
A();
A(A&&);
~A();
};
void bar() {
foo(foo(foo(foo(foo(A(), 4), 5), 6), 7), 8);
}
```
by replacing the inalloca version of the .ll file with the appropriate
preallocated code. Running the executable produces the same results as
using the current inalloca implementation.
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77689
like .cfi_restore"
Insert .cfi_offset/.cfi_register when IncomingCSRSaved of current block
is larger than OutgoingCSRSaved of its previous block.
Original commit message:
https://reviews.llvm.org/D42848 only handled CFA related cfi directives but
didn't handle CSR related cfi. The patch adds the CSR part. Basically it reuses
the framework created in D42848. For each basicblock, the patch tracks which
CSR set have been saved at its CFG predecessors's exits, and compare the CSR
set with the set at its previous basicblock's exit (The previous block is the
block laid before the current block). If the saved CSR set at its previous
basicblock's exit is larger, .cfi_restore will be inserted.
The patch also generates proper .cfi_restore in epilogue to make sure the
saved CSR set is consistent for the incoming edges of each block.
Differential Revision: https://reviews.llvm.org/D74303
Summary:
This is patch is part of a series to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790
Reviewers: courbet
Subscribers: jyknight, sdardis, nemanjai, hiraditya, kbarton, fedor.sergeev, asb, rbar, johnrusso, simoncook, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, jfb, PkmX, jocewei, Jim, lenary, s.egerton, pzheng, sameer.abuasal, apazos, luismarques, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77059
This reverts commit 4e0fe038f4. Re-lands
65b21282c7.
After landing 5ff5ddd0ad to add int3 into
trailing unreachable blocks, we can now remove these extra stack
adjustments without confusing the Win64 unwinder. See
https://llvm.org/45064#c4 or X86AvoidTrailingCall.cpp for a full
explanation.
Fixes PR45064.
Summary:
This is patch is part of a series to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790
Reviewers: courbet
Subscribers: dylanmckay, sdardis, nemanjai, hiraditya, kbarton, asb, rbar, johnrusso, simoncook, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, PkmX, jocewei, Jim, lenary, s.egerton, pzheng, sameer.abuasal, apazos, luismarques, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D76551
Summary:
This is patch is part of a series to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790
Reviewers: courbet
Subscribers: jholewinski, arsenm, dschuff, jyknight, sdardis, nemanjai, jvesely, nhaehnle, sbc100, jgravelle-google, hiraditya, aheejin, kbarton, fedor.sergeev, asb, rbar, johnrusso, simoncook, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, PkmX, jocewei, Jim, lenary, s.egerton, pzheng, sameer.abuasal, apazos, luismarques, kerbowa, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D76348
In 172eee9c, we tried to avoid these by modelling the callee as
internally resetting the stack pointer.
However, for the majority of functions with reserved stack frames, this
would lead LLVM to emit extra SP adjustments to undo the callee's
internal adjustment. This lead us to fix the problem further on down the
pipeline in eliminateCallFramePseudoInstr. In 5b79e603d3, I added
use a heuristic to try to detect when the adjustment would be
unreachable.
This heuristic is imperfect, and when exception handling is involved, it
fails to fire. The new test is an example of this. Simply throwing an
exception with an active cleanup emits dead SP adjustments after the
throw. Not only are they dead, but if they were executed, they would be
incorrect, so they are confusing.
This change essentially reverts 172eee9c and makes the 5b79e603d3
heuristic responsible for preventing unreachable stack adjustments. This
means we may emit unreachable stack adjustments for functions using EH
with unreserved call frames, but that is not very many these days. Back
in 2016 when this change was added, we were focused on 32-bit, which we
observed to have fewer reserved frames.
Fixes PR45064
Reviewed By: hans
Differential Revision: https://reviews.llvm.org/D75712
https://reviews.llvm.org/D42848 only handled CFA related cfi directives but
didn't handle CSR related cfi. The patch adds the CSR part. Basically it reuses
the framework created in D42848. For each basicblock, the patch tracks which
CSR set have been saved at its CFG predecessors's exits, and compare the CSR
set with the set at its previous basicblock's exit (The previous block is the
block laid before the current block). If the saved CSR set at its previous
basicblock's exit is larger, .cfi_restore will be inserted.
The patch also generates proper .cfi_restore in epilogue to make sure the
saved CSR set is consistent for the incoming edges of each block.
Differential Revision: https://reviews.llvm.org/D74303
Implement protection against the stack clash attack [0] through inline stack
probing.
Probe stack allocation every PAGE_SIZE during frame lowering or dynamic
allocation to make sure the page guard, if any, is touched when touching the
stack, in a similar manner to GCC[1].
This extends the existing `probe-stack' mechanism with a special value `inline-asm'.
Technically the former uses function call before stack allocation while this
patch provides inlined stack probes and chunk allocation.
Only implemented for x86.
[0] https://www.qualys.com/2017/06/19/stack-clash/stack-clash.txt
[1] https://gcc.gnu.org/ml/gcc-patches/2017-07/msg00556.html
This a recommit of 39f50da2a3 with proper LiveIn
declaration, better option handling and more portable testing.
Differential Revision: https://reviews.llvm.org/D68720
Implement protection against the stack clash attack [0] through inline stack
probing.
Probe stack allocation every PAGE_SIZE during frame lowering or dynamic
allocation to make sure the page guard, if any, is touched when touching the
stack, in a similar manner to GCC[1].
This extends the existing `probe-stack' mechanism with a special value `inline-asm'.
Technically the former uses function call before stack allocation while this
patch provides inlined stack probes and chunk allocation.
Only implemented for x86.
[0] https://www.qualys.com/2017/06/19/stack-clash/stack-clash.txt
[1] https://gcc.gnu.org/ml/gcc-patches/2017-07/msg00556.html
This a recommit of 39f50da2a3 with proper LiveIn
declaration, better option handling and more portable testing.
Differential Revision: https://reviews.llvm.org/D68720
Implement protection against the stack clash attack [0] through inline stack
probing.
Probe stack allocation every PAGE_SIZE during frame lowering or dynamic
allocation to make sure the page guard, if any, is touched when touching the
stack, in a similar manner to GCC[1].
This extends the existing `probe-stack' mechanism with a special value `inline-asm'.
Technically the former uses function call before stack allocation while this
patch provides inlined stack probes and chunk allocation.
Only implemented for x86.
[0] https://www.qualys.com/2017/06/19/stack-clash/stack-clash.txt
[1] https://gcc.gnu.org/ml/gcc-patches/2017-07/msg00556.html
This a recommit of 39f50da2a3 with better option
handling and more portable testing
Differential Revision: https://reviews.llvm.org/D68720
Implement protection against the stack clash attack [0] through inline stack
probing.
Probe stack allocation every PAGE_SIZE during frame lowering or dynamic
allocation to make sure the page guard, if any, is touched when touching the
stack, in a similar manner to GCC[1].
This extends the existing `probe-stack' mechanism with a special value `inline-asm'.
Technically the former uses function call before stack allocation while this
patch provides inlined stack probes and chunk allocation.
Only implemented for x86.
[0] https://www.qualys.com/2017/06/19/stack-clash/stack-clash.txt
[1] https://gcc.gnu.org/ml/gcc-patches/2017-07/msg00556.html
This a recommit of 39f50da2a3 with correct option
flags set.
Differential Revision: https://reviews.llvm.org/D68720
This reverts commit 39f50da2a3.
The -fstack-clash-protection is being passed to the linker too, which
is not intended.
Reverting and fixing that in a later commit.
Implement protection against the stack clash attack [0] through inline stack
probing.
Probe stack allocation every PAGE_SIZE during frame lowering or dynamic
allocation to make sure the page guard, if any, is touched when touching the
stack, in a similar manner to GCC[1].
This extends the existing `probe-stack' mechanism with a special value `inline-asm'.
Technically the former uses function call before stack allocation while this
patch provides inlined stack probes and chunk allocation.
Only implemented for x86.
[0] https://www.qualys.com/2017/06/19/stack-clash/stack-clash.txt
[1] https://gcc.gnu.org/ml/gcc-patches/2017-07/msg00556.html
Differential Revision: https://reviews.llvm.org/D68720
The CATCHPAD node mostly existed to be selected into the EH_RESTORE
instruction, which sets the frame back up when 32-bit Windows exceptions
return to the parent function. However, creating this MachineInstr early
increases the risk that other passes will come along and insert
instructions that use the stack before ESP and EBP are restored. That
happened in PR44697.
Instead of representing these in the instruction stream early, delay it
until PEI. Mark the blocks where this needs to happen as EHPads, but not
funclet entry blocks. Passes after PEI have to be careful not to hoist
instructions that can use stack across frame setup instructions, so this
should be relatively reliable.
Fixes PR44697
Reviewed By: hans
Differential Revision: https://reviews.llvm.org/D73752