to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
Summary:
AvailableExternal was not handled in isDiscardableIfUnused when isDiscardableIfUnused
was added in r158476. Till it was handled in r247044. This is a NFC.
Reviewers: pcc, tejohnson
Reviewed By: tejohnson
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D52319
llvm-svn: 342684
Summary:
std::unordered_multimap happens to be very slow when the number of elements
grows large. On one of our internal applications we observed a 17x compile time
improvement from changing it to DenseMap.
Reviewers: mehdi_amini, serge-sans-paille, davide
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D38916
llvm-svn: 316045
Change the original algorithm so that it scales better when meeting
very large bitcode where every instruction does not implies a global.
The target query is "how to you get all the globals referenced by
another global"?
Before this patch, it was doing this by walking the body (or the
initializer) and collecting the references. What this patch is doing,
it precomputing the answer to this query for the whole module by
walking the use-list of every global instead.
Patch by: Serge Guelton <serge.guelton@telecom-bretagne.eu>
Differential Revision: https://reviews.llvm.org/D28549
llvm-svn: 293328
a lazy-asserting PoisoningVH.
AssertVH is fundamentally incompatible with cache-invalidation of
analysis results. The invaliadtion happens after the AssertingVH has
already fired. Instead, use a PoisoningVH that will assert if the
dangling handle is ever used rather than merely be assigned or
destroyed.
This patch also removes all of the (numerous) doomed attempts to work
around this fundamental incompatibility. It is a pretty significant
simplification IMO.
The most interesting change is in the Inliner where we still do some
clearing because we don't want to rely on the coarse grained
invalidation strategy of the containing pass manager. However, I prefer
the approach that contains this logic to the cleanup phase of the
Inliner, and I think we could enhance the CGSCC analysis management
layer to make this even better in the future if desired.
The rest is straight cleanup.
I've also added a test for one of the harder cases to work around: when
a *module analysis* contains many AssertingVHes pointing at functions.
Differential Revision: https://reviews.llvm.org/D29006
llvm-svn: 292928
invalidation of deleted functions in GlobalDCE.
This was always testing a bug really triggered in GlobalDCE. Right now
we have analyses with asserting value handles into IR. As long as those
remain, when *deleting* an IR unit, we cannot wait for the normal
invalidation scheme to kick in even though it was designed to work
correctly in the face of these kinds of deletions. Instead, the pass
needs to directly handle invalidating the analysis results pointing at
that IR unit.
I've tought the Inliner about this and this patch teaches GlobalDCE.
This will handle the asserting VH case in the existing test as well as
other issues of the same fundamental variety. I've moved the test into
the GlobalDCE directory and added a comment explaining what is going on.
Note that we cannot simply require LVI here because LVI is too lazy.
llvm-svn: 292773
This is a convenience iterator that allows clients to enumerate the
GlobalObjects within a Module.
Also start using it in a few places where it is obviously the right thing
to use.
Differential Revision: http://reviews.llvm.org/D21580
llvm-svn: 273470
pass manager passes' `run` methods.
This removes a bunch of SFINAE goop from the pass manager and just
requires pass authors to accept `AnalysisManager<IRUnitT> &` as a dead
argument. This is a small price to pay for the simplicity of the system
as a whole, despite the noise that changing it causes at this stage.
This will also helpfull allow us to make the signature of the run
methods much more flexible for different kinds af passes to support
things like intelligently updating the pass's progression over IR units.
While this touches many, many, files, the changes are really boring.
Mostly made with the help of my trusty perl one liners.
Thanks to Sean and Hal for bouncing ideas for this with me in IRC.
llvm-svn: 272978
We forgot to consider the target of ifuncs when considering if a
function was alive or dead.
N.B. Also update a few auxiliary tools like bugpoint and
verify-uselistorder.
This fixes PR27593.
llvm-svn: 268468
The original commit was reverted because of a buildbot problem with LazyCallGraph::SCC handling (not related to the OptBisect handling).
Differential Revision: http://reviews.llvm.org/D19172
llvm-svn: 267231
This patch implements a optimization bisect feature, which will allow optimizations to be selectively disabled at compile time in order to track down test failures that are caused by incorrect optimizations.
The bisection is enabled using a new command line option (-opt-bisect-limit). Individual passes that may be skipped call the OptBisect object (via an LLVMContext) to see if they should be skipped based on the bisect limit. A finer level of control (disabling individual transformations) can be managed through an addition OptBisect method, but this is not yet used.
The skip checking in this implementation is based on (and replaces) the skipOptnoneFunction check. Where that check was being called, a new call has been inserted in its place which checks the bisect limit and the optnone attribute. A new function call has been added for module and SCC passes that behaves in a similar way.
Differential Revision: http://reviews.llvm.org/D19172
llvm-svn: 267022
Removed some unused headers, replaced some headers with forward class declarations.
Found using simple scripts like this one:
clear && ack --cpp -l '#include "llvm/ADT/IndexedMap.h"' | xargs grep -L 'IndexedMap[<]' | xargs grep -n --color=auto 'IndexedMap'
Patch by Eugene Kosov <claprix@yandex.ru>
Differential Revision: http://reviews.llvm.org/D19219
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 266595
Make personality functions, prefix data, and prologue data hungoff
operands of Function.
This is based on the email thread "[RFC] Clean up the way we store
optional Function data" on llvm-dev.
Thanks to sanjoyd, majnemer, rnk, loladiro, and dexonsmith for feedback!
Includes a fix to scrub value subclass data in dropAllReferences. Does not
use binary literals.
Differential Revision: http://reviews.llvm.org/D13829
llvm-svn: 256095
Make personality functions, prefix data, and prologue data hungoff
operands of Function.
This is based on the email thread "[RFC] Clean up the way we store
optional Function data" on llvm-dev.
Thanks to sanjoyd, majnemer, rnk, loladiro, and dexonsmith for feedback!
Includes a fix to scrub value subclass data in dropAllReferences.
Differential Revision: http://reviews.llvm.org/D13829
llvm-svn: 256093
Make personality functions, prefix data, and prologue data hungoff
operands of Function.
This is based on the email thread "[RFC] Clean up the way we store
optional Function data" on llvm-dev.
Thanks to sanjoyd, majnemer, rnk, loladiro, and dexonsmith for feedback!
Differential Revision: http://reviews.llvm.org/D13829
llvm-svn: 256090
The patch is generated using this command:
tools/clang/tools/extra/clang-tidy/tool/run-clang-tidy.py -fix \
-checks=-*,llvm-namespace-comment -header-filter='llvm/.*|clang/.*' \
llvm/lib/
Thanks to Eugene Kosov for the original patch!
llvm-svn: 240137
The personality routine currently lives in the LandingPadInst.
This isn't desirable because:
- All LandingPadInsts in the same function must have the same
personality routine. This means that each LandingPadInst beyond the
first has an operand which produces no additional information.
- There is ongoing work to introduce EH IR constructs other than
LandingPadInst. Moving the personality routine off of any one
particular Instruction and onto the parent function seems a lot better
than have N different places a personality function can sneak onto an
exceptional function.
Differential Revision: http://reviews.llvm.org/D10429
llvm-svn: 239940
When we encounter a global with a comdat, rather than iterating over
every global in the module to find globals in the same comdat, store the
members in a multimap. This effectively lowers the complexity to O(N log N),
improving performance significantly for large modules such as might be
encountered during LTO.
It looks like we used to do something like this until r219191.
No functional change.
Differential Revision: http://reviews.llvm.org/D8431
llvm-svn: 232743
Patch by Ben Gamari!
This redefines the `prefix` attribute introduced previously and
introduces a `prologue` attribute. There are a two primary usecases
that these attributes aim to serve,
1. Function prologue sigils
2. Function hot-patching: Enable the user to insert `nop` operations
at the beginning of the function which can later be safely replaced
with a call to some instrumentation facility
3. Runtime metadata: Allow a compiler to insert data for use by the
runtime during execution. GHC is one example of a compiler that
needs this functionality for its tables-next-to-code functionality.
Previously `prefix` served cases (1) and (2) quite well by allowing the user
to introduce arbitrary data at the entrypoint but before the function
body. Case (3), however, was poorly handled by this approach as it
required that prefix data was valid executable code.
Here we redefine the notion of prefix data to instead be data which
occurs immediately before the function entrypoint (i.e. the symbol
address). Since prefix data now occurs before the function entrypoint,
there is no need for the data to be valid code.
The previous notion of prefix data now goes under the name "prologue
data" to emphasize its duality with the function epilogue.
The intention here is to handle cases (1) and (2) with prologue data and
case (3) with prefix data.
References
----------
This idea arose out of discussions[1] with Reid Kleckner in response to a
proposal to introduce the notion of symbol offsets to enable handling of
case (3).
[1] http://lists.cs.uiuc.edu/pipermail/llvmdev/2014-May/073235.html
Test Plan: testsuite
Differential Revision: http://reviews.llvm.org/D6454
llvm-svn: 223189
This is to be consistent with StringSet and ultimately with the standard
library's associative container insert function.
This lead to updating SmallSet::insert to return pair<iterator, bool>,
and then to update SmallPtrSet::insert to return pair<iterator, bool>,
and then to update all the existing users of those functions...
llvm-svn: 222334
GlobalDCE deletes global vars and updates their initializers to nullptr
while leaving underlying constants to be cleaned up later by its uses.
The clean up may never happen, fix this by forcing it every time it's
safe to destroy constants.
Final patch by Rafael Espindola
http://reviews.llvm.org/D4931
<rdar://problem/17523868>
llvm-svn: 216390
This reverts commit 5b55a47e94e28fbb56d0cd5d72c3db9105c15b4c.
A test case was found to crash after this was applied. I'll file a bug to track fixing this with the test case needed.
llvm-svn: 212550
This is useful for functions that are not actually available externally but
referenced by a vtable of some kind. Clang emits functions like this for the MS
ABI.
PR20182.
llvm-svn: 212337
This new IR facility allows us to represent the object-file semantic of
a COMDAT group.
COMDATs allow us to tie together sections and make the inclusion of one
dependent on another. This is required to implement features like MS
ABI VFTables and optimizing away certain kinds of initialization in C++.
This functionality is only representable in COFF and ELF, Mach-O has no
similar mechanism.
Differential Revision: http://reviews.llvm.org/D4178
llvm-svn: 211920
This moves most of GlobalOpt's constructor optimization
code out of GlobalOpt into Transforms/Utils/CDtorUtils.{h,cpp}. The
public interface is a single function OptimizeGlobalCtorsList() that
takes a predicate returning which constructors to remove.
GlobalOpt calls this with a function that statically evaluates all
constructors, just like it did before. This part of the change is
behavior-preserving.
Also add a call to this from GlobalDCE with a filter that removes global
constructors that contain a "ret" instruction and nothing else – this
fixes PR19590.
llvm-svn: 207856
definition below all of the header #include lines, lib/Transforms/...
edition.
This one is tricky for two reasons. We again have a couple of passes
that define something else before the includes as well. I've sunk their
name macros with the DEBUG_TYPE.
Also, InstCombine contains headers that need DEBUG_TYPE, so now those
headers #define and #undef DEBUG_TYPE around their code, leaving them
well formed modular headers. Fixing these headers was a large motivation
for all of these changes, as "leaky" macros of this form are hard on the
modules implementation.
llvm-svn: 206844
This is basically the same fix in three different places. We use a set to avoid
walking the whole tree of a big ConstantExprs multiple times.
For example: (select cmp, (add big_expr 1), (add big_expr 2))
We don't want to visit big_expr twice here, it may consist of thousands of
nodes.
The testcase exercises this by creating an insanely large ConstantExprs out of
a loop. It's questionable if the optimizer should ever create those, but this
can be triggered with real C code. Fixes PR15714.
llvm-svn: 179458
into their new header subdirectory: include/llvm/IR. This matches the
directory structure of lib, and begins to correct a long standing point
of file layout clutter in LLVM.
There are still more header files to move here, but I wanted to handle
them in separate commits to make tracking what files make sense at each
layer easier.
The only really questionable files here are the target intrinsic
tablegen files. But that's a battle I'd rather not fight today.
I've updated both CMake and Makefile build systems (I think, and my
tests think, but I may have missed something).
I've also re-sorted the includes throughout the project. I'll be
committing updates to Clang, DragonEgg, and Polly momentarily.
llvm-svn: 171366
Sooooo many of these had incorrect or strange main module includes.
I have manually inspected all of these, and fixed the main module
include to be the nearest plausible thing I could find. If you own or
care about any of these source files, I encourage you to take some time
and check that these edits were sensible. I can't have broken anything
(I strictly added headers, and reordered them, never removed), but they
may not be the headers you'd really like to identify as containing the
API being implemented.
Many forward declarations and missing includes were added to a header
files to allow them to parse cleanly when included first. The main
module rule does in fact have its merits. =]
llvm-svn: 169131