Summary:
This is patch is part of a serie to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790
Reviewers: courbet, jfb, jakehehrlich
Reviewed By: jfb
Subscribers: wuzish, jholewinski, arsenm, dschuff, nemanjai, jvesely, nhaehnle, javed.absar, sbc100, jgravelle-google, hiraditya, aheejin, kbarton, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, rogfer01, MartinMosbeck, brucehoult, the_o, dexonsmith, PkmX, jocewei, jsji, s.egerton, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65514
llvm-svn: 367828
Summary:
This was originally reported in D62818.
https://rise4fun.com/Alive/oPH
InstCombine does the opposite fold, in hope that `C l>>/<< Y` expression
will be hoisted out of a loop if `Y` is invariant and `X` is not.
But as it is seen from the diffs here, if it didn't get hoisted,
the produced assembly is almost universally worse.
Much like with my recent "hoist add/sub by/from const" patches,
we should get almost universal win if we hoist constant,
there is almost always an "and/test by imm" instruction,
but "shift of imm" not so much, so we may avoid having to
materialize the immediate, and thus need one less register.
And since we now shift not by constant, but by something else,
the live-range of that something else may reduce.
Special care needs to be applied not to disturb x86 `BT` / hexagon `tstbit`
instruction pattern. And to not get into endless combine loop.
Reviewers: RKSimon, efriedma, t.p.northover, craig.topper, spatel, arsenm
Reviewed By: spatel
Subscribers: hiraditya, MaskRay, wuzish, xbolva00, nikic, nemanjai, jvesely, wdng, nhaehnle, javed.absar, tpr, kristof.beyls, jsji, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62871
llvm-svn: 366955
As discussed on D62910, we need to check whether particular types of memory access are allowed, not just their alignment/address-space.
This NFC patch adds a MachineMemOperand::Flags argument to allowsMemoryAccess and allowsMisalignedMemoryAccesses, and wires up calls to pass the relevant flags to them.
If people are happy with this approach I can then update X86TargetLowering::allowsMisalignedMemoryAccesses to handle misaligned NT load/stores.
Differential Revision: https://reviews.llvm.org/D63075
llvm-svn: 363179
As suggested by @arsenm on D63075 - this adds a TargetLowering::allowsMemoryAccess wrapper that takes a Load/Store node's MachineMemOperand to handle the AddressSpace/Alignment arguments and will also implicitly handle the MachineMemOperand::Flags change in D63075.
llvm-svn: 363048
The MachineFunction wasn't used in getOptimalMemOpType, but more importantly,
this allows reuse of findOptimalMemOpLowering that is calling getOptimalMemOpType.
This is the groundwork for the changes in D59766 and D59787, that allows
implementation of TTI::getMemcpyCost.
Differential Revision: https://reviews.llvm.org/D59785
llvm-svn: 359537
This allows better code size for aarch64 floating point materialization
in a future patch.
Reviewers: evandro
Differential Revision: https://reviews.llvm.org/D58690
llvm-svn: 356389
This patch accompanies the RFC posted here:
http://lists.llvm.org/pipermail/llvm-dev/2018-October/127239.html
This patch adds a new CallBr IR instruction to support asm-goto
inline assembly like gcc as used by the linux kernel. This
instruction is both a call instruction and a terminator
instruction with multiple successors. Only inline assembly
usage is supported today.
This also adds a new INLINEASM_BR opcode to SelectionDAG and
MachineIR to represent an INLINEASM block that is also
considered a terminator instruction.
There will likely be more bug fixes and optimizations to follow
this, but we felt it had reached a point where we would like to
switch to an incremental development model.
Patch by Craig Topper, Alexander Ivchenko, Mikhail Dvoretckii
Differential Revision: https://reviews.llvm.org/D53765
llvm-svn: 353563
This cleans up all CallInst creation in LLVM to explicitly pass a
function type rather than deriving it from the pointer's element-type.
Differential Revision: https://reviews.llvm.org/D57170
llvm-svn: 352909
This broke the RISCV build, and even with that fixed, one of the RISCV
tests behaves surprisingly differently with asserts than without,
leaving there no clear test pattern to use. Generally it seems bad for
hte IR to differ substantially due to asserts (as in, an alloca is used
with asserts that isn't needed without!) and nothing I did simply would
fix it so I'm reverting back to green.
This also required reverting the RISCV build fix in r351782.
llvm-svn: 351796
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
That is, remove many of the calls to Type::getNumContainedTypes(),
Type::subtypes(), and Type::getContainedType(N).
I'm not intending to remove these accessors -- they are
useful/necessary in some cases. However, removing the pointee type
from pointers would potentially break some uses, and reducing the
number of calls makes it easier to audit.
llvm-svn: 350835
This is a long-awaited follow-up suggested in D33578. Since then, we've picked up even more
opportunities for vector narrowing from changes like D53784, so there are a lot of test diffs.
Apart from 2-3 strange cases, these are all wins.
I've structured this to be no-functional-change-intended for any target except for x86
because I couldn't tell if AArch64, ARM, and AMDGPU would improve or not. All of those
targets have existing regression tests (4, 4, 10 files respectively) that would be
affected. Also, Hexagon overrides the shouldReduceLoadWidth() hook, but doesn't show
any regression test diffs. The trade-off is deciding if an extra vector load is better
than a single wide load + extract_subvector.
For x86, this is almost always better (on paper at least) because we often can fold
loads into subsequent ops and not increase the official instruction count. There's also
some unknown -- but potentially large -- benefit from using narrower vector ops if wide
ops are implemented with multiple uops and/or frequency throttling is avoided.
Differential Revision: https://reviews.llvm.org/D54073
llvm-svn: 346595
The main caller of this already has an MVT and several targets called getSimpleVT inside without checking isSimple. This makes the simpleness explicit.
llvm-svn: 346180
Small-data (i.e. GP-relative) loads and stores allow 16-bit scaled
offset. For a load of a value of type T, the small-data area is
equivalent to an array "T sdata[65536]". This implies that objects
of smaller sizes need to be closer to the beginning of sdata,
while larger objects may be farther away, or otherwise the offset
may be insufficient to reach it. Similarly, an object of a larger
size should not be accessed via a load of a smaller size.
llvm-svn: 345975
This involves changing the shouldExpandAtomicCmpXchgInIR interface, but I have
updated the in-tree backends using this hook (ARM, AArch64, Hexagon) so they
will see no functional change. Previously this hook returned bool, but it now
returns AtomicExpansionKind.
This hook allows targets to select how a given cmpxchg is to be expanded.
D48131 uses this to expand part-word cmpxchg to a target-specific intrinsic.
See my associated RFC for more info on the motivation for this change
<http://lists.llvm.org/pipermail/llvm-dev/2018-June/123993.html>.
Differential Revision: https://reviews.llvm.org/D48130
llvm-svn: 342550
For example v = <2 x i1> is represented as bbbbaaaa in a predicate register,
where b = v[1], a = v[0]. Extracting v[1] is equivalent to extracting bit 4
from the predicate register.
llvm-svn: 337934
This is marginally helpful for removing redundant extensions, and the
code is easier to read, so it seems like an all-around win. In the new
test i8-phi-ext.ll, we used to emit an AssertSext i8; now we emit an
AssertZext i2, which allows the extension of the return value to be
eliminated.
Differential Revision: https://reviews.llvm.org/D49004
llvm-svn: 336868
Implement default legalization of rotates: either in terms of the rotation
in the opposite direction (if legal), or in terms of shifts and ors.
Implement generating of rotate instructions for Hexagon. Hexagon only
supports rotates by an immediate value, so implement custom lowering of
ROTL/ROTR on Hexagon. If a rotate is not legal, use the default expansion.
Differential Revision: https://reviews.llvm.org/D47725
llvm-svn: 334497
Summary:
They've been deprecated in favor of UADDO/ADDCARRY or USUBO/SUBCARRY for a while.
Target that uses these opcodes are changed in order to ensure their behavior doesn't change.
Reviewers: efriedma, craig.topper, dblaikie, bkramer
Subscribers: jholewinski, arsenm, jyknight, sdardis, nemanjai, nhaehnle, kbarton, fedor.sergeev, asb, rbar, johnrusso, simoncook, jordy.potman.lists, apazos, sabuasal, niosHD, jrtc27, zzheng, edward-jones, mgrang, atanasyan, llvm-commits
Differential Revision: https://reviews.llvm.org/D47422
llvm-svn: 333748
The code that generates post-increments for Hexagon considered
integer values only. This patch adds support to generate them for
floating point values, f32 and f64.
Differential Revision: https://reviews.llvm.org/D47036
llvm-svn: 332748
The DEBUG() macro is very generic so it might clash with other projects.
The renaming was done as follows:
- git grep -l 'DEBUG' | xargs sed -i 's/\bDEBUG\s\?(/LLVM_DEBUG(/g'
- git diff -U0 master | ../clang/tools/clang-format/clang-format-diff.py -i -p1 -style LLVM
- Manual change to APInt
- Manually chage DOCS as regex doesn't match it.
In the transition period the DEBUG() macro is still present and aliased
to the LLVM_DEBUG() one.
Differential Revision: https://reviews.llvm.org/D43624
llvm-svn: 332240
There was some unfortunate interaction between VSPLAT and BITCAST
related to the selection of constant vectors (coming from selecting
shuffles). Introduce VSPLATW that always splats a 32-bit word, and
can have arbitrary result type (to avoid BITCASTs of VSPLAT).
Clean up the previous selection of BITCAST/VSPLAT.
llvm-svn: 330471
Currently EVT is in the IR layer only because of Function.cpp needing a very small piece of the functionality of EVT::getEVTString(). The rest of EVT is used in codegen making CodeGen a better place for it.
The previous code converted a Type* to EVT and then called getEVTString. This was only expected to handle the primitive types from Type*. Since there only a few primitive types, we can just print them as strings directly.
Differential Revision: https://reviews.llvm.org/D45017
llvm-svn: 328806
This is a follow-up to r325169, this time for all types, not just HVX
vector types.
Disable this by default, since it's not always safe.
llvm-svn: 326915