Summary:
Previously we took an unsigned.
Hooray for type-safety.
Reviewers: chandlerc
Subscribers: dsanders, llvm-commits
Differential Revision: http://reviews.llvm.org/D22282
llvm-svn: 275591
This commit removes the global manager variable which is responsible for
storing and allocating pseudo source values and instead it introduces a new
manager class named 'PseudoSourceValueManager'. Machine functions now own an
instance of the pseudo source value manager class.
This commit also modifies the 'get...' methods in the 'MachinePointerInfo'
class to construct pseudo source values using the instance of the pseudo
source value manager object from the machine function.
This commit updates calls to the 'get...' methods from the 'MachinePointerInfo'
class in a lot of different files because those calls now need to pass in a
reference to a machine function to those methods.
This change will make it easier to serialize pseudo source values as it will
enable me to transform the mips specific MipsCallEntry PseudoSourceValue
subclass into two target independent subclasses.
Reviewers: Akira Hatanaka
llvm-svn: 244693
The patch is generated using this command:
tools/clang/tools/extra/clang-tidy/tool/run-clang-tidy.py -fix \
-checks=-*,llvm-namespace-comment -header-filter='llvm/.*|clang/.*' \
llvm/lib/
Thanks to Eugene Kosov for the original patch!
llvm-svn: 240137
Add header guards to files that were missing guards. Remove #endif comments
as they don't seem common in LLVM (we can easily add them back if we decide
they're useful)
Changes made by clang-tidy with minor tweaks.
llvm-svn: 215558
sink them into MC layer.
- Added MCInstrInfo, which captures the tablegen generated static data. Chang
TargetInstrInfo so it's based off MCInstrInfo.
llvm-svn: 134021
"getFixedStack" on the MachinePointerInfo class. While
this isn't the problem I'm setting out to solve, it is the
right way to eliminate PseudoSourceValue, so lets go with it.
llvm-svn: 114406
Since mem2reg isn't run at -O0, we get a ton of reloads from the stack,
for example, before, this code:
int foo(int x, int y, int z) {
return x+y+z;
}
used to compile into:
_foo: ## @foo
subq $12, %rsp
movl %edi, 8(%rsp)
movl %esi, 4(%rsp)
movl %edx, (%rsp)
movl 8(%rsp), %edx
movl 4(%rsp), %esi
addl %edx, %esi
movl (%rsp), %edx
addl %esi, %edx
movl %edx, %eax
addq $12, %rsp
ret
Now we produce:
_foo: ## @foo
subq $12, %rsp
movl %edi, 8(%rsp)
movl %esi, 4(%rsp)
movl %edx, (%rsp)
movl 8(%rsp), %edx
addl 4(%rsp), %edx ## Folded load
addl (%rsp), %edx ## Folded load
movl %edx, %eax
addq $12, %rsp
ret
Fewer instructions and less register use = faster compiles.
llvm-svn: 113102
like all other instructions, even though a segment is not
allowed. This resolves a bunch of gross hacks in the
encoder and makes LEA more consistent with the rest of the
instruction set.
No functionality change.
llvm-svn: 107934
stack slots and giving them different PseudoSourceValue's did not fix the
problem of post-alloc scheduling miscompiling llvm itself.
- Apply Dan's conservative workaround by assuming any non fixed stack slots can
alias other memory locations. This means a load from spill slot #1 cannot
move above a store of spill slot #2.
- Enable post-alloc scheduling for x86 at optimization leverl Default and above.
llvm-svn: 84424
- Allocate MachineMemOperands and MachineMemOperand lists in MachineFunctions.
This eliminates MachineInstr's std::list member and allows the data to be
created by isel and live for the remainder of codegen, avoiding a lot of
copying and unnecessary translation. This also shrinks MemSDNode.
- Delete MemOperandSDNode. Introduce MachineSDNode which has dedicated
fields for MachineMemOperands.
- Change MemSDNode to have a MachineMemOperand member instead of its own
fields with the same information. This introduces some redundancy, but
it's more consistent with what MachineInstr will eventually want.
- Ignore alignment when searching for redundant loads for CSE, but remember
the greatest alignment.
Target-specific code which previously used MemOperandSDNodes with generic
SDNodes now use MemIntrinsicSDNodes, with opcodes in a designated range
so that the SelectionDAG framework knows that MachineMemOperand information
is available.
llvm-svn: 82794
booleans. This gives a better indication of what the "addReg()" is
doing. Remembering what all of those booleans mean isn't easy, especially if you
aren't spending all of your time in that code.
I took Jakob's suggestion and made it illegal to pass in "true" for the
flag. This should hopefully prevent any unintended misuse of this (by reverting
to the old way of using addReg()).
llvm-svn: 71722
builds.
--- Reverse-merging (from foreign repository) r68552 into '.':
U test/CodeGen/X86/tls8.ll
U test/CodeGen/X86/tls10.ll
U test/CodeGen/X86/tls2.ll
U test/CodeGen/X86/tls6.ll
U lib/Target/X86/X86Instr64bit.td
U lib/Target/X86/X86InstrSSE.td
U lib/Target/X86/X86InstrInfo.td
U lib/Target/X86/X86RegisterInfo.cpp
U lib/Target/X86/X86ISelLowering.cpp
U lib/Target/X86/X86CodeEmitter.cpp
U lib/Target/X86/X86FastISel.cpp
U lib/Target/X86/X86InstrInfo.h
U lib/Target/X86/X86ISelDAGToDAG.cpp
U lib/Target/X86/AsmPrinter/X86ATTAsmPrinter.cpp
U lib/Target/X86/AsmPrinter/X86IntelAsmPrinter.cpp
U lib/Target/X86/AsmPrinter/X86ATTAsmPrinter.h
U lib/Target/X86/AsmPrinter/X86IntelAsmPrinter.h
U lib/Target/X86/X86ISelLowering.h
U lib/Target/X86/X86InstrInfo.cpp
U lib/Target/X86/X86InstrBuilder.h
U lib/Target/X86/X86RegisterInfo.td
llvm-svn: 68560
This introduces a small regression on the generated code
quality in the case we are just computing addresses, not
loading values.
Will work on it and on X86-64 support.
llvm-svn: 68552