member function (default constructor, copy constructor, copy
assignment operator, destructor), emit a note showing where that
implicit definition was required.
llvm-svn: 103619
Made a stylistic changed to the code/comments related to the unsupported COMDAT selection type IMAGE_COMDAT_SELECT_LARGEST based on from Anton Korobeynikov.
llvm-svn: 103590
<rdar://problem/7961995> and <rdar://problem/7967123> where declarations with attributes
would get grossly annotated with the wrong tokens because the attribute would be interpreted
as if it was a Decl*.
llvm-svn: 103581
Now, the .linkonce directive is emitted as part of MCSectionCOFF::PrintSwitchToSection instead of AsmPrinter::EmitLinkage since it is an attribute of the section the symbol was placed into not the symbol itself.
llvm-svn: 103568
v1024 = REG_SEQUENCE ...
v1025 = EXTRACT_SUBREG v1024, 5
v1026 = EXTRACR_SUBREG v1024, 6
= VSTxx <addr>, v1025, v1026
The REG_SEQUENCE ensures the sources that feed into the VST instruction
are getting the right register allocation so they form a large super-
register. The extract_subreg will be coalesced away all would just work:
v1024 = REG_SEQUENCE ...
= VSTxx <addr>, v1024:5, v1024:6
The problem is if the coalescer isn't run, the extract_subreg instructions
would stick around and there is no assurance v1025 and v1026 will get the
right registers.
As a short term workaround, teach the NEON pre-allocation pass to transfer
the sub-register indices over. An alternative would be do it 2addr pass
when reg_sequence's are eliminated. But that *seems* wrong and require
updating liveness information.
Another alternative is to do this in the scheduler when the instructions are
created. But that would mean somehow the scheduler this has to be done for
correctness reason. That's yucky as well. So for now, we are leaving this
in the target specific pass.
llvm-svn: 103540
about the permitted scopes. Specifically:
1) Permit labels and gotos to appear after a prologue of variable initializations.
2) Permit indirect gotos to jump out of scopes that don't require cleanup.
3) Diagnose possible attempts to indirect-jump out of scopes that do require
cleanup.
This requires a substantial reinvention of the algorithm for checking indirect
goto. The current algorithm is Omega(M*N), with M = the number of unique
scopes being jumped from and N = the number of unique scopes being jumped to,
with an additional factor that is probably (worst-case) linear in the depth
of scopes. Thus the entire thing is likely cubic given some truly bizarre
ill-formed code; on well-formed code the additional factor collapses to
an amortized constant (when amortized over the entire function) and so
the algorithm is quadratic. Even this requires every label to appear in
its own scope, which would be very unusual for indirect-goto code (and
extremely unlikely for well-formed code); it is far more likely that
all labels will be in the same scope and so the algorithm becomes linear.
For such a marginal feature, I am fairly happy with this result.
(this is using JumpDiagnostic's definition of scope, where successive
variables in a block appear in their own scope)
llvm-svn: 103536
be diced into atoms, and adjust getAtom() to take this into account.
- This fixes relocations to symbols in fixed size literal sections, for
example.
llvm-svn: 103532