(unittests/ExecutionEngine/JIT/CMakeLists.txt is still missing for now, since
it handles export files in a strange way: It generates a .exports file from a
.def file instead of the other way round.)
llvm-svn: 198183
The cmake build didn't support EXPORTED_SYMBOL_FILE. Instead, it had a
Windows-only implementation in tools/lto/CMakeLists.txt, a linux-only
implementation in tools/gold/CMakeLists.txt, and a darwin-only implementation
in tools/clang/tools/libclang/CMakeLists.txt.
This attempts to consolidate these one-offs into a single place. Clients can now
just set LLVM_EXPORTED_SYMBOL_FILE and things (hopefully) Just Work, like in
the make build.
llvm-svn: 198136
This reduces the size of clang-format from 22 MB to 1.8 MB, diagtool goes from
21 MB to 2.8 MB, libclang.so goes from 29 MB to 20 MB, etc. The size of the
bin/ folder shrinks from 270 MB to 200 MB.
Targets that support plugins and don't already use EXPORTED_SYMBOL_FILE
(which libclang and libLTO already do) can set NO_DEAD_STRIP to opt out.
llvm-svn: 198087
Although --system-libs is expected to use after --libs, it can be used alone.
$ bin/llvm-config --ldflags
-L/path/to/llvm/objroot/lib
$ bin/llvm-config --libs object
-lLLVMObject -lLLVMSupport
$ bin/llvm-config --system-libs
(Blank line. "all" is assumed but nothing is printed.)
-lrt -ldl -ltinfo -lpthread -lz
$ bin/llvm-config --ldflags --libs --system-libs object
-L/path/to/llvm/objroot/lib
-lLLVMObject -lLLVMSupport
-lrt -ldl -ltinfo -lpthread -lz
It is reimplementation of r197380, and workaround for PR3347 and PR8449.
FIXME: Each LLVM component may have its dependent system libs.
llvm-svn: 197664
Similar to the file summaries, the function summaries output line,
branching and call statistics. The file summaries have been moved
outside the initial loop so that all of the function summaries can be
outputted before file summaries.
Also updated test cases.
llvm-svn: 197633
With llvm-config.exe --bindir --libdir --build-mode, on Visual Studio 2010,
In build tree:
(OBJ_ROOT)/bin/MinSizeRel
(OBJ_ROOT)/lib/MinSizeRel
MinSizeRel
In installed tree:
(INSTALL_PREFIX)/bin
(INSTALL_PREFIX)/lib
MinSizeRel
This is enhancements since r196283.
llvm-svn: 197467
Outputs branch information for unconditional branches in addition to
conditional branches. -b option must be enabled.
Also updated tests.
llvm-svn: 197432
FIXME: Host's llvm-config is not generated. It's for target's.
Host tools, aka "BuildTools", in utils, do not require llvm-config to build.
For example with --host=i686-pc-mingw32 --build=linux,
$ BuildTools/Release+Asserts/bin/llvm-config --libs support
-lLLVMSupport
-lpthread -lshell32 -lpsapi -limagehlp -lm
llvm-svn: 197382
LLVM libs are printed in the first line, and system libs are printed in the next line.
$ bin/llvm-config --libs object
-lLLVMObject -lLLVMSupport
-lrt -ldl -ltinfo -lpthread -lz
It is workaround for PR3347 and PR8449.
llvm-svn: 197380
This option tells llvm-cov to print out branch probabilities when
a basic block contains multiple branches. It also prints out some
function summary info including the number of times the function enters,
the percent of time it returns, and how many blocks were executed.
Also updated tests.
llvm-svn: 197198
Similar to gcov, llvm-cov will now print out the block count at the end
of each block. Multiple blocks can end on the same line.
One computational difference is by using -a, llvm-cov will no longer
simply add the block counts together to form a line count. Instead, it
will take the maximum of the block counts on that line. This has a
similar effect to what gcov does, but generates more correct counts in
certain scenarios.
Also updated tests.
llvm-svn: 196856
The intended behaviour is to force vectorization on the presence
of the flag (either turn on or off), and to continue the behaviour
as expected in its absence. Tests were added to make sure the all
cases are covered in opt. No tests were added in other tools with
the assumption that they should use the PassManagerBuilder in the
same way.
This patch also removes the outdated -late-vectorize flag, which was
on by default and not helping much.
The pragma metadata is being attached to the same place as other loop
metadata, but nothing forbids one from attaching it to a function
(to enable #pragma optimize) or basic blocks (to hint the basic-block
vectorizers), etc. The logic should be the same all around.
Patches to Clang to produce the metadata will be produced after the
initial implementation is agreed upon and committed. Patches to other
vectorizers (such as SLP and BB) will be added once we're happy with
the pass manager changes.
llvm-svn: 196537
This splits the file-scope read() function into readGCNO() and
readGCDA(). Also broke file format read into functions that first read
the file type, then check the version.
llvm-svn: 196353
clang enables vectorization at optimization levels > 1 and size level < 2. opt
should behave similarily.
Loop vectorization and SLP vectorization can be disabled with the flags
-disable-(loop/slp)-vectorization.
llvm-svn: 196294
Instead of asking the user to specify a single file to output coverage
info and defaulting to STDOUT, llvm-cov now creates files for each
source file with a naming system of: <source filename> + ".llcov".
This is what gcov does and although it can clutter the working directory
with numerous coverage files, it will be easier to hook the llvm-cov
output to tools which operate on this assumption (such as lcov).
llvm-svn: 196184
only user was an ancient SCC printing bit of the opt tool which really
should be walking the call graph the same way the CGSCC pass manager
does.
llvm-svn: 195800
CallGraph.
This makes the CallGraph a totally generic analysis object that is the
container for the graph data structure and the primary interface for
querying and manipulating it. The pass logic is separated into its own
class. For compatibility reasons, the pass provides wrapper methods for
most of the methods on CallGraph -- they all just forward.
This will allow the new pass manager infrastructure to provide its own
analysis pass that constructs the same CallGraph object and makes it
available. The idea is that in the new pass manager, the analysis pass's
'run' method returns a concrete analysis 'result'. Here, that result is
a 'CallGraph'. The 'run' method will typically do only minimal work,
deferring much of the work into the implementation of the result object
in order to be lazy about computing things, but when (like DomTree)
there is *some* up-front computation, the analysis does it prior to
handing the result back to the querying pass.
I know some of this is fairly ugly. I'm happy to change it around if
folks can suggest a cleaner interim state, but there is going to be some
amount of unavoidable ugliness during the transition period. The good
thing is that this is very limited and will naturally go away when the
old pass infrastructure goes away. It won't hang around to bother us
later.
Next up is the initial new-PM-style call graph analysis. =]
llvm-svn: 195722
This patch places class definitions in implementation files into anonymous
namespaces to prevent weak vtables. This eliminates the need of providing an
out-of-line definition to pin the vtable explicitly to the file.
llvm-svn: 195092
This patch removes most of the trivial cases of weak vtables by pinning them to
a single object file. The memory leaks in this version have been fixed. Thanks
Alexey for pointing them out.
Differential Revision: http://llvm-reviews.chandlerc.com/D2068
Reviewed by Andy
llvm-svn: 195064
This change is incorrect. If you delete virtual destructor of both a base class
and a subclass, then the following code:
Base *foo = new Child();
delete foo;
will not cause the destructor for members of Child class. As a result, I observe
plently of memory leaks. Notable examples I investigated are:
ObjectBuffer and ObjectBufferStream, AttributeImpl and StringSAttributeImpl.
llvm-svn: 194997
This patch removes most of the trivial cases of weak vtables by pinning them to
a single object file.
Differential Revision: http://llvm-reviews.chandlerc.com/D2068
Reviewed by Andy
llvm-svn: 194865