if E is merely instantiation-dependent."
This change leaves us unable to distinguish between different function
templates that differ in only instantiation-dependent ways, for example
template<typename T> decltype(int(T())) f();
template<typename T> decltype(int(T(0))) f();
We'll need substantially better support for types that are
instantiation-dependent but not dependent before we can go ahead with
this change.
This reverts commit e3065ce238.
if E is merely instantiation-dependent.
Previously reverted in 34e72a146111dd986889a0f0ec8767b2ca6b2913;
re-committed with a fix to an issue that caused name mangling to assert.
This reverts an attempt to check that types match when matching a
dependently-typed non-type template parameter. (This comes up when matching the
parameters of a template template parameter against the parameters of a
template template argument.)
The matching rules here are murky at best. Our behavior after this revert is
definitely wrong for certain C++17 features (for 'auto' template parameter
types within the parameter list of a template template argument in particular),
but our behavior before this revert is wrong for some pre-existing testcases,
so reverting to our prior behavior seems like our best option.
llvm-svn: 300262
A 'decltype(auto)' parameter can match any other kind of non-type template
parameter, so should be usable in place of any other parameter in a template
template argument. The standard is sadly extremely unclear on how this is
supposed to work, but this seems like the obviously-correct result.
It's less clear whether an 'auto' parameter should be able to match
'decltype(auto)', since the former cannot be used if the latter turns out to be
used for a reference type, but if we disallow that then consistency suggests we
should also disallow 'auto' matching 'T' for the same reason, defeating
intended use cases of the feature.
llvm-svn: 295866
The rules around typechecking deduced template arguments during partial
ordering are not clear, and while the prior behavior does not seem to be
correct (it doesn't follow the general model of partial ordering where each
template parameter is replaced by a non-dependent but unique value), the new
behavior is also not clearly right and breaks some existing idioms.
The new behavior is retained for dealing with non-type template parameters
with 'auto' types, as without it even the most basic uses of that feature
don't work. We can revisit this once CWG has come to an agreement on how
partial ordering with 'auto' non-type template parameters is supposed to
work.
llvm-svn: 292183
properly even when a non-type template parameter has a dependent type.
Previously, if a non-type template parameter was dependent, but not dependent
on an outer level of template parameter, we would not match the type of the
parameter. Under [temp.arg.template], we are supposed to check that the types
are equivalent, which means checking for syntactic equivalence in the dependent
case.
This also fixes some accepts-invalids when passing templates with auto-typed
non-type template parameters as template template arguments.
llvm-svn: 291512
to be specified for a template template parameter whenever the parameter is at
least as specialized as the argument (when there's an obvious and correct
mapping from uses of the parameter to uses of the argument). For example, a
template with more parameters can be passed to a template template parameter
with fewer, if those trailing parameters have default arguments.
This is disabled by default, despite being a DR resolution, as it's fairly
broken in its current state: there are no partial ordering rules to cope with
template template parameters that have different parameter lists, meaning that
code that attempts to decompose template-ids based on arity can hit unavoidable
ambiguity issues.
The diagnostics produced on a non-matching argument are also pretty bad right
now, but I aim to improve them in a subsequent commit.
llvm-svn: 290792