This patch make lld show following details for undefined symbol errors:
- file (line)
- file (function name)
- file (section name + offset)
Differential revision: https://reviews.llvm.org/D25826
llvm-svn: 285186
We were previously using the (static) addSynthetic function to create
*_start/*_end symbols. This function was doing almost the same thing as
addOptionalSynthetic, except that it would also create the symbol in the
case where it is unreferenced. Because the symbol has hidden visibility,
creating it in that case would have no effect other than adding another
entry to the static symbol table. Remove addSynthetic and change callers to
use addOptionalSynthetic instead.
Differential Revision: https://reviews.llvm.org/D25545
llvm-svn: 285021
When doing a relocatable link the .ARM.exidx sections with the
SHF_LINK_ORDER flag set need to set the sh_link field to the executable
section they describe. We find the appropriate OutputSection by
following the sh_link field of the .ARM.exidx InputSections.
The getOutputSectionName() function rules make sure that when there are
multiple .ARM.exidx InputSections in an OutputSection they all have the
same sh_link field.
Differential revision: https://reviews.llvm.org/D25825
llvm-svn: 284820
Some MIPS relocations used to access GOT entries are able to manipulate
16-bit index. The other ones like R_MIPS_CALL_HI16/LO16 can handle
32-bit indexes. 16-bit relocations are generated by default. The 32-bit
relocations are generated by -mxgot flag passed to compiler. Usually
these relocation are not mixed in the same code but files like crt*.o
contain 16-bit relocations so even if all "user's" code compiled with
-mxgot flag a few 16-bit relocations might come to the linking phase.
Now LLD does not differentiate local GOT entries accessed via a 16-bit
and 32-bit indexes. That might lead to relocation's overflow if 16-bit
entries are allocated to far from the beginning of the GOT.
The patch introduces new "part" of MIPS GOT dedicated to the local GOT
entries accessed by 32-bit relocations. That allows to put local GOT
entries accessed via a 16-bit index first and escape relocation's overflow.
Differential revision: https://reviews.llvm.org/D25833
llvm-svn: 284809
Summary:
The rules for quoting the command line that a subprocess receives are
user space conventions implemented by the C runtime. Python's quoting
rules are implemented here:
c30098c8c6/Lib/subprocess.py (L725)
The result is that the final command line C string computed by Python is
'echo \"'. Mingw doesn't appear to interpret that backslash as escaping
the quote because it is not already inside a quoted region. As a result,
our echo command prints a single backslash instead of a quote.
The whole issue can be sidestepped by adding a space a forcing Python to
put the argument to echo in double quotes.
Reviewers: inglorion, ruiu
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D25841
llvm-svn: 284768
This is needed for the following case (OpenCL example):
__global int Var = 0;
__global int* Ptr[] = {&Var};
...
Differential Revision: https://reviews.llvm.org/D25815
llvm-svn: 284764
The R_ARM_PREL31 and R_ARM_NONE relocations should not be faulted in
shared libraries. In the case of R_ARM_NONE, we have moved the TLS
relaxation hint instruction to R_TLSDESC_CALL so that R_HINT can be used
without side-effects. In the case of R_ARM_PREL31 we permit it to be used
against PLT entries as the personality routines are imported when used in
shared libraries.
Differential Revision: https://reviews.llvm.org/D25721
llvm-svn: 284710
This script below shouldn't include file and program headers
to PT_LOAD segment, because it doesn't have PHDRS and FILEHDR
attributes:
PHDRS { all PT_LOAD; }
SECTIONS { /* list of sections here */ }
Differential revision: https://reviews.llvm.org/D25774
llvm-svn: 284709
In this patch partial gdb_index section is created.
For costructing the .gdb_index section 6 steps should be performed (details are in
SplitDebugInfo.cpp file header), this patch do first 3:
Creates proper section header.
Fills list of compilation units.
Types CU list area is not supposed to be supported, so it is ignored and therefore
can be treated as implemented either.
Differential revision: https://reviews.llvm.org/D24706
llvm-svn: 284708
-format=<foo>, -format <foo> and -b <foo> are all the same.
Previous code was intended to produce an error message with the
same spelling as given from the command line, but it actually
always printed out this string: "unknown -format= value:".
This is probably more confusing than "unknown -format value:".
So I changed the message.
llvm-svn: 284693
Previously, we were checking the existence of an entry symbol
too early. It was done before the linker script processor creates
symbols defined in scripts. Fixes bug 30743.
llvm-svn: 284676
Linker scripts may specify PHDRS, but not specify section to
segment assignments, i.e:
PHDRS { seg PT_LOAD; }
SECTIONS {
.sec1 {} : seg
.sec2 {}
}
In such case linker should still choose some segment for .sec2 section.
This patch will add .sec2 to previously opened segments (seg) or to the
very first PT_LOAD segment, if no section-to-segment assignments has been
made
Differential revision: https://reviews.llvm.org/D24795
llvm-svn: 284600
Both gold and ld accepts integers instead of named constants
for PHDRS.
Patch adds support for that.
Differential revision: https://reviews.llvm.org/D25549
llvm-svn: 284470
The R_ARM_TARGET2 relocation is used in ARM exception tables to encode
a data dependency that will only be dereferenced by code in the
run-time support library. In a similar way to R_ARM_TARGET1 the
handling of the relocation is target specific, it maps to one of
R_ARM_ABS32, R_ARM_REL32 or R_ARM_GOT_PREL. The choice depends on the
run-time library. R_ARM_GOT_PREL is used for linux and BSD,
R_ARM_ABS32 and R_ARM_REL32 are used for bare-metal.
The command line option --target2=<target> can be used to select the
relocation used for R_ARM_TARGET2. The default is R_ARM_GOT_PREL.
Differential revision: https://reviews.llvm.org/D25684
llvm-svn: 284404
In continue of D25555, this patch fixes possible crash when
we have multiple SHT_MIPS_REGINFO or SHT_MIPS_ABIFLAGS sections.
yaml2obj was used to produce such objects.
Differential revision: https://reviews.llvm.org/D25609
llvm-svn: 284376
It was requested on review for https://reviews.llvm.org/D25090 to add testcase in lld.
Spec says (http://www.sco.com/developers/gabi/1998-04-29/ch4.eheader.html) :
e_shnum
This member holds the number of entries in the section header table.
Thus the product of e_shentsize and e_shnum gives the section header table's size in bytes.
If a file has no section header table, e_shnum holds the value zero.
In case revealed, broken input did not contain zero in this field.
LLD then could crash when proccessed sections (returned array has incorrect size):
template <class ELFT> void SharedFile<ELFT>::parseSoName() {
...
for (const Elf_Shdr &Sec : Obj.sections()) {
...
llvm-svn: 284375
This is 30646.
PT_OPENBSD_RANDOMIZE
The array element specifies the location and size of a part of the memory image of the program that must be filled with random data before any code in the object is executed. The memory region specified by a segment of this type may overlap the region specified by a PT_GNU_RELRO segment, in which case the intersection will be filled with random data before being marked read-only.
Reference links:
http://man.openbsd.org/OpenBSD-current/man5/elf.5c494713c45
Differential revision: https://reviews.llvm.org/D25469
llvm-svn: 284234
Issue was revealed by AFl and I was able to generate such object using yaml2obj.
When object has more than one SHT_MIPS_OPTIONS,
each except the last one is destroyed after placing into Sections array.
Sections array contains dead pointers finally. LLD may crash then.
Differential revision: https://reviews.llvm.org/D25555
llvm-svn: 284227
-z wxneeded creates a PHDR PT_OPENBSD_WXNEEDED.
PT_OPENBSD_WXNEEDED
The array element specifies that a process executing this file may need to be able to map or protect memory regions as simultaneously executable and writable. If the system is unable or unwilling to permit that for this executable then it may fail immediately. This segment type is meaningful only for executable files and is ignored in other objects.
http://man.openbsd.org/OpenBSD-current/man5/elf.5
Differential revision: https://reviews.llvm.org/D25472
llvm-svn: 284226
Previously we would fail to synthesise a __start_ or __stop_ symbol if
there existed a definition in a DSO. Instead, we would try to link against
the DSO definition. This became possible after D23552 when linking against
lld-produced DSOs but could in principle also occur when linking against
DSOs produced by other linkers.
Not only does it seem more likely that a user would expect the resolved
definition to be local to the executable, but if a __start_ or __stop_
symbol was synthesised by the linker, it is effectively impossible to link
against correctly from a non-PIC executable in a read-only section. Neither
a PLT nor a copy relocation would give us the right semantics here. The only
way the link could succeed is if the executable provided its own synthetic
definition of the symbol.
The fix is to also synthesise the definition if the only definition comes
from a DSO. Since this is what the addOptionalSynthetic function does,
switch to using that function.
Fixes PR30680.
Differential Revision: https://reviews.llvm.org/D25544
llvm-svn: 284168
Previously, we supported only SHF_COMPRESSED sections because it's
new and it's the ELF standard. But there are object files compressed
in the GNU style out there, so we had to support it.
Sections compressed in the GNU style start with ".zdebug_" and
contain different headers than the ELF standard's one. In this
patch, getRawCompressedData is responsible to handle it.
A tricky thing about GNU-style compressed sections is that we have
to rename them when creating output sections. ".zdebug_" prefix
implies the section is compressed. We need to rename ".zdebug_"
".debug" because our output sections are not compressed.
We do that in this patch.
llvm-svn: 284068
r283984 introduced a problem of too many warning messages being shown
when -ffunction-sections and -fdata-sections were used in conjunction
with --gc-sections linker flag and debugging information present. This
happens because lot of relocations from .debug_line section may become
invalid in such case. The newer fix doesn't show any warning message but
zeroes OutSec pointer in createInputSectionList() to avoid crash, when
relocations are written
llvm-svn: 284010
Following the lazy reference might bring in an object file that depends
on bitcode files that weren't part of the LTO step.
Differential Revision: https://reviews.llvm.org/D25461
llvm-svn: 283989
I don't really understand why we get a larger .rodata section only
on this bot. I guess it may be picking up a library which contains
a .rodata. I removed the specific values since their values are not
important for this test case.
llvm-svn: 283931
This part was splitted from D25016.
When sh_info value was set in the way that non-local symbol was treated as local, lld
was asserting, patch fixes that.
Differential revision: https://reviews.llvm.org/D25371
llvm-svn: 283859
Before the default was whatever number hardware_concurrency() returned.
Users can specify the number of threads via --lto-jobs=X option.
llvm-svn: 283787