Added a new setting that allows a python OS plug-in to detect threads and provide registers for memory threads. To enable this you set the setting:
settings set target.process.python-os-plugin-path lldb/examples/python/operating_system.py
Then run your program and see the extra threads.
llvm-svn: 166244
Make breakpoint setting by file and line much more efficient by only looking for inlined breakpoint locations if we are setting a breakpoint in anything but a source implementation file. Implementing this complex for a many reasons. Turns out that parsing compile units lazily had some issues with respect to how we need to do things with DWARF in .o files. So the fixes in the checkin for this makes these changes:
- Add a new setting called "target.inline-breakpoint-strategy" which can be set to "never", "always", or "headers". "never" will never try and set any inlined breakpoints (fastest). "always" always looks for inlined breakpoint locations (slowest, but most accurate). "headers", which is the default setting, will only look for inlined breakpoint locations if the breakpoint is set in what are consudered to be header files, which is realy defined as "not in an implementation source file".
- modify the breakpoint setting by file and line to check the current "target.inline-breakpoint-strategy" setting and act accordingly
- Modify compile units to be able to get their language and other info lazily. This allows us to create compile units from the debug map and not have to fill all of the details in, and then lazily discover this information as we go on debuggging. This is needed to avoid parsing all .o files when setting breakpoints in implementation only files (no inlines). Otherwise we would need to parse the .o file, the object file (mach-o in our case) and the symbol file (DWARF in the object file) just to see what the compile unit was.
- modify the "SymbolFileDWARFDebugMap" to subclass lldb_private::Module so that the virtual "GetObjectFile()" and "GetSymbolVendor()" functions can be intercepted when the .o file contenst are later lazilly needed. Prior to this fix, when we first instantiated the "SymbolFileDWARFDebugMap" class, we would also make modules, object files and symbol files for every .o file in the debug map because we needed to fix up the sections in the .o files with information that is in the executable debug map. Now we lazily do this in the DebugMapModule::GetObjectFile()
Cleaned up header includes a bit as well.
llvm-svn: 162860
Added code the initialize the register context in the OperatingSystemPython plug-in with the new PythonData classes, and added a test OperatingSystemPython module in lldb/examples/python/operating_system.py that we can use for testing.
llvm-svn: 162530
(lldb) script import lldb.macosx.crashlog
(lldb) crashlog -i /tmp/*.crash
% symbolicate --crashed-only
This will symbolicate all of the crash logs only for the crashed thread.
Also print out the crash log index number in the output of the interactive "image" command:
(lldb) script import lldb.macosx.crashlog
(lldb) crashlog -i /tmp/*.crash
% image LLDB.framework
...
This then allows you to symbolicate a crash log by index accurately when you looked for an image of a specific version
llvm-svn: 160316
Also made the symbolication of the crash logs more efficient when using the "--crashed-only" ("-c") option where only the crashed thread is symbolicated. We now only download the images for the frames in the crashed thread.
llvm-svn: 160160
Modified the heap.py to be able to correctly indentify the exact ivar for the "ptr_refs" command no matter how deep the ivar is in a class hierarchy. Also fixed the ability for the heap command to symbolicate the stack backtrace when MallocStackLogging is set in the environment and the "--stack" option was specified.
llvm-svn: 159883
Modified the crashlog darwin module to always create a uuid.UUID object when making the symbolication.Image objects. Also modified it to handle some more types of crash log files and improved the register reading for thread registers of crashed threads.
llvm-svn: 156596
% PYTHONPATH=./build/Debug/LLDB.framework/Resources/Python ; ./build/Debug//LLDB.framework/Resources/Python/lldb/macosx/crashlog.py -i ~/Downloads/crashes2/*.crash )
then you get an interactive prompt where you can search for data within all crash logs. For example you can do:
% list
which will list all crash logs
And you can search for all images given an image basename, or full path:
% image LLDB
% image /Applications/Xcode.app/Contents/SharedFrameworks/LLDB.framework/Versions/A/LLDB
% image LLDB.framework
Which would all produce an output listing like:
40CD4430-7D27-3248-BE4C-71B1F36FC5D0 (1.132 - 132) /Applications/Xcode.app/Contents/SharedFrameworks/LLDB.framework/Versions/A/LLDB, __TEXT=[0x000000011f8bc000 - 0x0000000120d3efbf)
B727A528-FF1F-3B20-9E4F-BBE96C7D922D (1.136 - 136) /Applications/Xcode.app/Contents/SharedFrameworks/LLDB.framework/Versions/A/LLDB, __TEXT=[0x000000011e7f7000 - 0x000000011fc7ff87)
4D6F8DC2-5757-39C7-96B0-1A5B5171DC6B (1.137 - 137) /Applications/Xcode.app/Contents/SharedFrameworks/LLDB.framework/Versions/A/LLDB, __TEXT=[0x000000012bd7f000 - 0x000000012d1fcfef)
FBF8786F-92B9-31E3-8BCD-A82148338966 (1.137 - 137) /Applications/Xcode.app/Contents/SharedFrameworks/LLDB.framework/Versions/A/LLDB, __TEXT=[0x0000000122d78000 - 0x00000001241f5fd7)
7AE082E3-3BB7-3F64-A308-063E559DFC45 (1.143 - 143) /Applications/Xcode.app/Contents/SharedFrameworks/LLDB.framework/Versions/A/LLDB, __TEXT=[0x0000000119b8d000 - 0x000000011b02ef5f)
7AE082E3-3BB7-3F64-A308-063E559DFC45 (1.143 - 143) /Applications/Xcode.app/Contents/SharedFrameworks/LLDB.framework/Versions/A/LLDB, __TEXT=[0x0000000111497000 - 0x0000000112938f5f)
7AE082E3-3BB7-3F64-A308-063E559DFC45 (1.143 - 143) /Applications/Xcode.app/Contents/SharedFrameworks/LLDB.framework/Versions/A/LLDB, __TEXT=[0x0000000116680000 - 0x0000000117b21f5f)
llvm-svn: 156201
Cleaned up the lldb.utils.symbolication, lldb.macosx.heap and lldb.macosx.crashlog. The lldb.macosx.heap can now build a dylib for the current triple into a temp directory and use it from there.
llvm-svn: 155577
new features:
(1) it outputs the instruction currently being
tested to a log file, if a path is provided
(2) if instructed, it prints the time remaining
in the exhaustive test
llvm-svn: 154205
Right now it only works on Mac OS X, but other
platforms would just need to add their own
implementation of AddLLDBToSysPathOn*().
The stress-tester has two modes:
Used with --bytes N --random, the stress-tester
generates random instructions of length N and
runs them through the disassembler. This is
suitable for architectures like Intel where it
is combinatorially infeasible to run through the
entire space of possible instructions.
Used with --bytes N and no arguments (or --start
S --stride T), the stress-tester tests the
disassembler with a monotonically increasing
sequence of instructions.
The --start and --stride arguments are intended
for use in multiprocessing environments. Give
each core an ID from 0 .. T-1, pass the ID in as
the --start, and use T as the stride, and you
can launch one copy of the stress-tester on each
core you have available.
llvm-svn: 154143
parse the output from "log enable --timestamp ...." and converts it to be relative
to the first timestamp and shows the time deltas between log lines. This can also
be used as a stand along script outside of lldb:
./delta.py log.txt
llvm-svn: 153288
(lldb) file /path/to/file.so
(lldb) crashlog crash.log
....
Then if the file.so has already been loaded it will use the one that is already in LLDB without trying to match up the paths.
llvm-svn: 153075
sbvalue.value (<SBValue>)
sbvalue.variable (<SBValue>)
Initialize both with a lldb.SBValue
sbvalue.value() make all sorts of convenience properties. Type "help(sbvalue.value)"
in the embedded python interpreter to see what is available.
sbvalue.variable() wraps a lldb.SBValue and allows you to play with your variable just
as you would expect:
pt = sbvalue.variable (lldb.frame.FindVariable("pt"))
print pt.x
print py.y
argv = sbvalue.variable (lldb.frame.FindVariable("argv"))
print argv[0]
Member access and array acccess is all taken care of!
llvm-svn: 149260
When this is imported into your lldb using the "command script import /path/to/gdbremote.py"
these new commands are available within LLDB. 'start_gdb_log' will enable logging with
timestamps for GDB remote packets, and 'stop_gdb_log' will then dump the details and
also a lot of packet timing data. This allows us to accurately track what packets are
taking up the most time when debugging (when using the ProcessGDBRemote debugging plug-in).
Also udpated the comments at the top of the cmdtemplate.py to show how to correctly import
the module from within LLDB.
llvm-svn: 149030
python so that single and double quotes and other standard shell like argument
parsing happens as expected before passing stuff along to option parsing.
Also handle exceptions so that we don't accidentally exit lldb if an uncaught
exception occurs.
llvm-svn: 148623
filled out the command help and removed unused options.
Updated the command to have a "--load-all" option that will cause the target
that gets created to locate and load all images specified in the Binary Images
section of the crash log to allow for complete program state to be matched
to that of the crash log, not just the images that were in the stack frames
(the default).
llvm-svn: 148605
environment variable it set to include a path to lldb.py.
Also fixed the case where the executable can't be located and doesn't match
what is installed on the current system. It will still symbolicate the other
frames, and will just show what was originally in the crash log file.
Also removed the --crash-log option so the arguments to the "crashlog"
command are one or more paths to crash logs.
Fixed the script to "auto-install" itself when loaded from the embedded
script interpreter. Now you only need to import the module and the
command is ready for use.
llvm-svn: 148561
of the identifier name in the binary images section. Improved the regular
expression for the frames.
Added a new file "crashlog.lldb" which can be sourced with "command source"
that will import the module and set itself up to be used as a command.
llvm-svn: 148529
module (you can't import a module with a '-' in it) and also added a
Symbolcate(...) top level function so it can be imported and used as an
LLDB command.
Then you can import the module and map a "crashlog" command (for darwin
use only currently) to the python function "crashlog.Symbolicate":
(lldb) script import crashlog
(lldb) command script add -f crashlog.Symbolicate crashlog
Then use it to symbolicate:
(lldb) crashlog --crash-log /path/to/foo.crash
The crash log will then get symbolicated and inline frames will be added to
the crash log and the frames will be displayed. The crash log currently will
only try and fetch and setup the target images requires in order to do the
symbolication.
This will need to be iterated upon, but it is getting close to being useful
so I am going to check this in.
llvm-svn: 148528
symbol context that represents an inlined function. This function has been
renamed internally to:
bool
SymbolContext::GetParentOfInlinedScope (const Address &curr_frame_pc,
SymbolContext &next_frame_sc,
Address &next_frame_pc) const;
And externally to:
SBSymbolContext
SBSymbolContext::GetParentOfInlinedScope (const SBAddress &curr_frame_pc,
SBAddress &parent_frame_addr) const;
The correct blocks are now correctly calculated.
Switched the stack backtracing engine (in StackFrameList) and the address
context printing over to using the internal SymbolContext::GetParentOfInlinedScope(...)
so all inlined callstacks will match exactly.
llvm-svn: 140910
is mostly geared towards darwin crash logs at the moment, though
it could be made more generic with a few tweaks.
The symbolicate-crash.py script will make a target given a crash log
and then symbolicate all frames and expand any frames that had inlined
functions in them to show all frames back to the concrete function. It
will also disassemble around the crash site.
llvm-svn: 140544
tricks to get types to resolve. I did this by correctly including the correct
files: stdint.h and all lldb-*.h files first before including the API files.
This allowed me to remove all of the hacks that were in the lldb.swig file
and it also allows all of the #defines in lldb-defines.h and enumerations
in lldb-enumerations.h to appear in the lldb.py module. This will make the
python script code a lot more readable.
Cleaned up the "process launch" command to not execute a "process continue"
command, it now just does what it should have with the internal API calls
instead of executing another command line command.
Made the lldb_private::Process set the state to launching and attaching if
WillLaunch/WillAttach return no error respectively.
llvm-svn: 115902
use the python API that is exposed through SWIG to do some cool stuff.
Also fixed synchronous debugging so that all process control APIs exposed
through the python API will now wait for the process to stop if you set
the async mode to false (see disasm.py).
llvm-svn: 115738