Commit Graph

7 Commits

Author SHA1 Message Date
Luis Marques e38695a025 Patch from Phabricator
llvm-svn: 372092
2019-09-17 09:43:08 +00:00
Alex Bradbury 3966b02cc8 [RISCV][NFC] Add nounwind attribute to functions missing it in test/CodeGen/RISCV
This is in preparation for emitting CFI directives.

llvm-svn: 360897
2019-05-16 13:56:23 +00:00
Alex Bradbury 8a70468a27 [RISCV] Only mark fp as reserved if the function has a dedicated frame pointer
This follows similar logic in the ARM and Mips backends, and allows the free
use of s0 in functions without a dedicated frame pointer. The changes in
callee-saved-gprs.ll most clearly show the effect of this patch.

llvm-svn: 356063
2019-03-13 16:33:45 +00:00
Alex Bradbury 192df587d1 [RISCV] Regenerate umulo-128-legalisation-lowering.ll
Upstream changes have improved codegen, reducing stack usage. Regenerate the test.

llvm-svn: 356044
2019-03-13 12:33:44 +00:00
Alex Bradbury 1cc2d0b9fb [RISCV] Avoid unnecessary XOR for seteq/setne 0
Differential Revision: https://reviews.llvm.org/D53492

Patch by James Clarke.

llvm-svn: 346497
2018-11-09 14:47:36 +00:00
Alex Bradbury efceb59801 [RISCV] Remove RV64 test lines from umulo-128-legalisation-lowering.ll
The generated code is incorrect anyway, and this test adds noise to the 
upcoming set of patches that flesh out RV64 support.

llvm-svn: 343675
2018-10-03 10:59:42 +00:00
Eli Friedman 73e8a784e6 [SelectionDAG] Improve the legalisation lowering of UMULO.
There is no way in the universe, that doing a full-width division in
software will be faster than doing overflowing multiplication in
software in the first place, especially given that this same full-width
multiplication needs to be done anyway.

This patch replaces the previous implementation with a direct lowering
into an overflowing multiplication algorithm based on half-width
operations.

Correctness of the algorithm was verified by exhaustively checking the
output of this algorithm for overflowing multiplication of 16 bit
integers against an obviously correct widening multiplication. Baring
any oversights introduced by porting the algorithm to DAG, confidence in
correctness of this algorithm is extremely high.

Following table shows the change in both t = runtime and s = space. The
change is expressed as a multiplier of original, so anything under 1 is
“better” and anything above 1 is worse.

+-------+-----------+-----------+-------------+-------------+
| Arch  | u64*u64 t | u64*u64 s | u128*u128 t | u128*u128 s |
+-------+-----------+-----------+-------------+-------------+
|   X64 |     -     |     -     |    ~0.5     |    ~0.64    |
|  i686 |   ~0.5    |   ~0.6666 |    ~0.05    |    ~0.9     |
| armv7 |     -     |   ~0.75   |      -      |    ~1.4     |
+-------+-----------+-----------+-------------+-------------+

Performance numbers have been collected by running overflowing
multiplication in a loop under `perf` on two x86_64 (one Intel Haswell,
other AMD Ryzen) based machines. Size numbers have been collected by
looking at the size of function containing an overflowing multiply in
a loop.

All in all, it can be seen that both performance and size has improved
except in the case of armv7 where code size has regressed for 128-bit
multiply. u128*u128 overflowing multiply on 32-bit platforms seem to
benefit from this change a lot, taking only 5% of the time compared to
original algorithm to calculate the same thing.

The final benefit of this change is that LLVM is now capable of lowering
the overflowing unsigned multiply for integers of any bit-width as long
as the target is capable of lowering regular multiplication for the same
bit-width. Previously, 128-bit overflowing multiply was the widest
possible.

Patch by Simonas Kazlauskas!

Differential Revision: https://reviews.llvm.org/D50310

llvm-svn: 339922
2018-08-16 18:39:39 +00:00