Fix PR53163 by rounding the byte size of DW_TAG_base_type types up. Without
this fix we risk emitting types with a truncated size (including rounding
less-than-byte-sized types' sizes down to zero).
Reviewed By: probinson
Differential Revision: https://reviews.llvm.org/D117124
This patch adds support for the MSVC /HOTPATCH flag: https://docs.microsoft.com/sv-se/cpp/build/reference/hotpatch-create-hotpatchable-image?view=msvc-170&viewFallbackFrom=vs-2019
The flag is translated to a new -fms-hotpatch flag, which in turn adds a 'patchable-function' attribute for each function in the TU. This is then picked up by the PatchableFunction pass which would generate a TargetOpcode::PATCHABLE_OP of minsize = 2 (which means the target instruction must resolve to at least two bytes). TargetOpcode::PATCHABLE_OP is only implemented for x86/x64. When targetting ARM/ARM64, /HOTPATCH isn't required (instructions are always 2/4 bytes and suitable for hotpatching).
Additionally, when using /Z7, we generate a 'hot patchable' flag in the CodeView debug stream, in the S_COMPILE3 record. This flag is then picked up by LLD (or link.exe) and is used in conjunction with the linker /FUNCTIONPADMIN flag to generate extra space before each function, to accommodate for live patching long jumps. Please see: d703b92296/lld/COFF/Writer.cpp (L1298)
The outcome is that we can finally use Live++ or Recode along with clang-cl.
NOTE: It seems that MSVC cl.exe always enables /HOTPATCH on x64 by default, although if we did the same I thought we might generate sub-optimal code (if this flag was active by default). Additionally, MSVC always generates a .debug$S section and a S_COMPILE3 record, which Clang doesn't do without /Z7. Therefore, the following MSVC command-line "cl /c file.cpp" would have to be written with Clang such as "clang-cl /c file.cpp /HOTPATCH /Z7" in order to obtain the same result.
Depends on D43002, D80833 and D81301 for the full feature.
Differential Revision: https://reviews.llvm.org/D116511
The GlobalISel combiner currently uses sign extension when manipulating
the LHS constant when combining a sequence of the following sequence of
machine instructions into a single constant:
```
%0:_(s32) = G_CONSTANT i32 <CONSTANT>
%1:_(p0) = G_INTTOPTR %0:_(s32)
%2:_(s64) = G_CONSTANT i64 <CONSTANT>
%3:_(p0) = G_PTR_ADD %1:_, %2:_(s64)
```
This causes an issue when the bit width of the first contant and the
target pointer size are different, as G_INTTOPTR has no sign extension
semantics.
This patch fixes this by capture an arbitrary precision in when matching
the constant, allowing the matching function to correctly zero extend
it.
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D116941
The tensorflow AOT compiler can cross-target, but it can't run on (for
example) arm64. We added earlier support where the AOT-ed header and object
would be built on a separate builder and then passed at build time to
a build host where the AOT compiler can't run, but clang can be otherwise
built.
To simplify such scenarios given we now support more than one AOT-able
case (regalloc and inliner), we make the AOT scenario centered on whether
files are generated, case by case (this includes the "passed from a
different builder" scenario).
This means we shouldn't need an 'umbrella' LLVM_HAVE_TF_AOT, in favor of
case by case control. A builder can opt out of an AOT case by passing that case's
model path as `none`. Note that the overrides still take precedence.
This patch controls conditional compilation with case-specific flags,
which can be enabled locally, for the component where those are
available. We still keep an overall flag for some tests.
The 'development/training' mode is unchanged, because there the model is
passed from the command line and interpreted.
Differential Revision: https://reviews.llvm.org/D117752
Instead of constructing DebugVariables and looking up the order
in the comparison function, compute the order upfront and then sort
a vector of (order, instr).
This improves compile-time by -0.4% geomean on CTMark ReleaseLTO-g.
Differential Revision: https://reviews.llvm.org/D117575
This patch writes the full -cc1 command into the resulting .OBJ, like MSVC does. This allows for external tools (Recode, Live++) to rebuild a source file without any external dependency but the .OBJ itself (other than the compiler) and without knowledge of the build system.
The LF_BUILDINFO record stores a full path to the compiler, the PWD (CWD at program startup), a relative or absolute path to the source, and the full CC1 command line. The stored command line is self-standing (does not depend on the environment). In the same way, MSVC doesn't exactly store the provided command-line, but an expanded version (a somehow equivalent of CC1) which is also self-standing.
For more information see PR36198 and D43002.
Differential Revision: https://reviews.llvm.org/D80833
This prevents crashes in the OpenMP offload pipeline as not everything
is properly annotated with debug information, e.g., the runtimes we link
in. While we might want to have them annotated, it seems to be generally
useful to gracefully handle missing debug info rather than crashing.
TODO: A test is missing and can hopefully be distilled prior to landing.
This fixes#51079.
Differential Revision: https://reviews.llvm.org/D116959
The bulk of the implementation is common between 'release' mode (==AOT-ed
model) and 'development' mode (for training), the main difference is
that in development mode, we may also log features (for training logs),
inject scoring information (currently after the Virtual Register
Rewriter) and then produce the log file.
This patch also introduces the score injection pass, 'Register
Allocation Pass Scoring', which is trivially just logging the score in
development mode.
Differential Revision: https://reviews.llvm.org/D117147
This was ignoring the requested result register, resulting in a
missing def when this happened in the IRTranslator. Fixes some crashes
and verifier errors at -O0.
Alternatively we could pass DstOps to the constant fold functions.
This extends the code in SearchForAndLoads to be able to look through
ANY_EXTEND nodes, which can be created from mismatching IR types where
the AND node we begin from only demands the low parts of the register.
That turns zext and sext into any_extends as only the low bits are
demanded. To be able to look through ANY_EXTEND nodes we need to handle
mismatching types in a few places, potentially truncating the mask to
the size of the final load.
Recommitted with a more conservative check for the type of the extend.
Differential Revision: https://reviews.llvm.org/D117457
This fixes a verifier error I ran into at -O0. A subregister copy had
an implicit kill of an overlapping superregister, which was partially
redefined by the copy. The preserved implicit operand killed
subregisters made live earlier in the sequence. AMDGPU already uses
similar logic for whether to preserve the kill of the superregister on
the final instruction if there's overlap.
This patch fixes a case where the 'align' parameter attribute on the
pointer operands to llvm.vp.gather and llvm.vp.scatter was being dropped
during the conversion to the SelectionDAG. The default alignment equal
to the ABI type alignment of the vector type was kept. It also updates
the documentation to reflect the fact that the parameter attribute is
now properly supported.
The default alignment of these intrinsics was previously documented as
being equal to the ABI alignment of the *scalar* type, when in fact that
wasn't the case: the ABI alignment of the vector type was used instead.
This has also been fixed in this patch.
Reviewed By: simoll, craig.topper
Differential Revision: https://reviews.llvm.org/D114423
This was noted as a potential cleanup in D117508.
getShiftAmountTy() has checks for vector, phase, etc. so it should
handle anything that the caller was trying to account for.
Just replacing std::map with DenseMap here is a major regression
-- because this code used an identity hash for ValueIDNum.
Because ValueIDNum is composed of multiple components, it is
important that we use a reasonably good hash function here, so
switch it to hash_value. DenseMapInfo::getHashValue<uint64_t>
would not be sufficient.
This gives a -0.8% geomean improvement on CTMark ReleaseLTO-g.
For AMDGPU, any use of the physical register EXEC prevents sinking even if it is not a real physical register read. Add check to see if a physical
register use can be ignored for sinking.
Also perform same constant and ignorable physical register check when considering sinking in loops.
https://reviews.llvm.org/D116053
When widening these intrinsics, we do not have to insert neutral
elements at the end of the vector as when widening vector.reduce.*
intrinsics, thanks to vector predication semantics.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D117467
This caused builds to fail with
llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp:5638:
bool (anonymous namespace)::DAGCombiner::BackwardsPropagateMask(llvm::SDNode *):
Assertion `NewLoad && "Shouldn't be masking the load if it can't be narrowed"' failed.
See the code review for a link to a reproducer.
> This extends the code in SearchForAndLoads to be able to look through
> ANY_EXTEND nodes, which can be created from mismatching IR types where
> the AND node we begin from only demands the low parts of the register.
> That turns zext and sext into any_extends as only the low bits are
> demanded. To be able to look through ANY_EXTEND nodes we need to handle
> mismatching types in a few places, potentially truncating the mask to
> the size of the final load.
>
> Differential Revision: https://reviews.llvm.org/D117457
This reverts commit 578008789f.
Split vp.reduction.* intrinsics by splitting the vector to reduce in
two halves, perform the reduction operation in each one of them and
accumulate the results of both operations.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D117469
Commit 2bddab25db removed a piece of code from
DwarfDebug::emitDebugLocEntry that according to code comments
"Make sure comments stay aligned".
This patch restores that piece of code, together with the addition
of some extra checks in an existing lit test to work as a regression
test. Without this patch we incorrectly get
.byte 159 # 0
instead of
.byte 159 # DW_OP_stack_value
Differential Revision: https://reviews.llvm.org/D117441
A possible codegen regression for PowerPC is noted in D117406
because we don't recognize a pattern that demands only 1 byte
from a bswap.
This fold has existed in IR since close to the beginning of LLVM:
https://github.com/llvm/llvm-project/blame/main/llvm/lib/Transforms/InstCombine/InstCombineSimplifyDemanded.cpp#L794
...so this patch copies that code as much as possible and adapts
it for SDAG.
The test for PowerPC that would change in D117406 is over-reduced
with undefs, so I recreated it for AArch64 and x86 by passing in
pointer args and renamed the values to make the logic clearer.
Differential Revision: https://reviews.llvm.org/D117508
This extends the code in SearchForAndLoads to be able to look through
ANY_EXTEND nodes, which can be created from mismatching IR types where
the AND node we begin from only demands the low parts of the register.
That turns zext and sext into any_extends as only the low bits are
demanded. To be able to look through ANY_EXTEND nodes we need to handle
mismatching types in a few places, potentially truncating the mask to
the size of the final load.
Differential Revision: https://reviews.llvm.org/D117457
When we know the value we're extending is a negative constant then it
makes sense to use SIGN_EXTEND because this may improve code quality in
some cases, particularly when doing a constant splat of an unpacked vector
type. For example, for SVE when splatting the value -1 into all elements
of a vector of type <vscale x 2 x i32> the element type will get promoted
from i32 -> i64. In this case we want the splat value to sign-extend from
(i32 -1) -> (i64 -1), whereas currently it zero-extends from
(i32 -1) -> (i64 0xFFFFFFFF). Sign-extending the constant means we can use
a single mov immediate instruction.
New tests added here:
CodeGen/AArch64/sve-vector-splat.ll
I believe we see some code quality improvements in these existing
tests too:
CodeGen/AArch64/reduce-and.ll
CodeGen/AArch64/unfold-masked-merge-vector-variablemask.ll
The apparent regressions in CodeGen/AArch64/fast-isel-cmp-vec.ll only
occur because the test disables codegen prepare and branch folding.
Differential Revision: https://reviews.llvm.org/D114357
Update code comments in DAGCombiner::ReduceLoadWidth and refactor
the handling of SRL a bit. The refactoring is done with the intent
of adding support for folding away SRA by using SEXTLOAD in a
follow-up patch.
The function is also renamed as DAGCombiner::reduceLoadWidth.
Differential Revision: https://reviews.llvm.org/D117104
Use the AttributeSet constructor instead. There's no good reason
why AttrBuilder itself should exact the AttributeSet from the
AttributeList. Moving this out of the AttrBuilder generally results
in cleaner code.
Original patch by @hussainjk.
This patch was split off from D109377 to keep vector legalization
(widening/splitting) separate from vector element legalization
(promoting).
While the original patch added a third overload of
SelectionDAG::getVPStore, this patch takes the liberty of collapsing
those all down to 1, as three overloads seems excessive for a
little-used node.
The original patch also used ModifyToType in places, but that method
still crashes on scalable vector types. Seeing as the other VP
legalization methods only work when all operands need identical
widening, this patch follows in that vein.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D117235
This seems to be a leftover from a long time ago when there was
an ISD::VBIT_CONVERT and a MVT::Vector. It looks like in those days
the vector type was carried in a VTSDNode.
As far as I know, these days ComputeValueTypes would have already
assigned "Result" the same type we're getting from TLI.getValueType
here. Thus the BITCAST is always a NOP. Verified by adding an assert
and running check-llvm.
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D117335
This commit sometimes causes a crash when compiling a vtable thunk. E.g.:
clang '--target=aarch64-grtev4-linux-gnu' -xc++ - -c -o /dev/null <<EOF
struct a {
virtual int f();
};
struct c {
virtual int &g() const;
};
struct d : a, c {
int &g() const;
};
int &d::g() const {}
EOF
Some follow-up commits have been reverted as well:
Revert "IR: Make getRetAlign check callee function attributes"
Revert "Fix MSVC "32-bit shift implicitly converted to 64 bits" warning. NFC."
Revert "Fix MSVC "32-bit shift implicitly converted to 64 bits" warning. NFC."
This reverts commit 4f414af6a7.
This reverts commit a5507d2e25.
This reverts commit 3d2d208f6a.
This reverts commit 07ddfa95e3.
IR:
- globals (and functions, ifuncs, aliases) can have a partition
- catchret has a `to` before the label
- the sint/int types do not exist
- signext comes after the type
- a variable was missing its type
TableGen:
- The second value after a `#` concatenation is optional
See e.g. llvm/lib/Target/X86/X86InstrAVX512.td:L3351
- IncludeDirective and PreprocessorDirective were never referenced in
the grammar
- Add some missing ;
- Parent classes of multiclasses can have generic arguments.
Reuse the `ParentClassList` that is already used in other places.
MIR:
- liveins only allows physical registers, which start with a $
Differential Revision: https://reviews.llvm.org/D116674
When we know the value we're extending is a negative constant then it
makes sense to use SIGN_EXTEND because this may improve code quality in
some cases, particularly when doing a constant splat of an unpacked vector
type. For example, for SVE when splatting the value -1 into all elements
of a vector of type <vscale x 2 x i32> the element type will get promoted
from i32 -> i64. In this case we want the splat value to sign-extend from
(i32 -1) -> (i64 -1), whereas currently it zero-extends from
(i32 -1) -> (i64 0xFFFFFFFF). Sign-extending the constant means we can use
a single mov immediate instruction.
New tests added here:
CodeGen/AArch64/sve-vector-splat.ll
I believe we see some code quality improvements in these existing
tests too:
CodeGen/AArch64/dag-numsignbits.ll
CodeGen/AArch64/reduce-and.ll
CodeGen/AArch64/unfold-masked-merge-vector-variablemask.ll
The apparent regressions in CodeGen/AArch64/fast-isel-cmp-vec.ll only
occur because the test disables codegen prepare and branch folding.
Differential Revision: https://reviews.llvm.org/D114357
This wasn't running at -O0, and causing crashes for AMDGPU. AMDGPU
needs this to match the addressing modes of stack access instructions,
which is even more important at -O0 than with optimizations.
It currently costs nothing to run ahead of time, so just always enable
it.
In a future change, AMDGPU will have 2 emergency scavenging indexes in
some situations. The secondary scavenging index ends up being used
recursively when the scavenger calls eliminateFrameIndex for the
emergency spill slot. Without this, it would end up seeing the same
register which was just scavenged in the parent call as free, inserts
a second emergency spill to the same location and returns the same
register when 2 unique free registers are required.
We need to only do this if the register is used. SystemZ uses 2
scavenging slots, but calls the scavenger twice in sequence and not
recursively. In this case the previously scavenged register can be
re-clobbered, but is still tracked in the scavenger until it sees the
deferred restore instruction.
This was inserting the new G_CONSTANT after the use, and the later
block scan would run off the end. Fix calling SkipPHIsAndLabels for no
apparent reason.
Fma combine assumes that MRI.getVRegDef(Reg)->getOperand(0).getReg() = Reg
which is not true when Reg is defined by instruction with multiple defs
e.g. G_UNMERGE_VALUES.
Fix is to keep register and the instruction that defines register in
DefinitionAndSourceRegister and use when needed.
Differential Revision: https://reviews.llvm.org/D117032
This ports the `.cg_profile` assembly directive and call graph profile section
generation to MachO from COFF/ELF. Due to MachO section naming rules, the
section is called `__LLVM,__cg_profile` rather than `.llvm.call-graph-profile`
as in COFF/ELF. Support for llvm-readobj is included to facilitate testing.
Corresponding LLD change is D112164
Differential Revision: https://reviews.llvm.org/D112160