(This is the second attemp to commit this patch, after fixing pr26652 & pr26653).
This patch detects vector reductions before instruction selection. Vector
reductions are vectorized reduction operations, and for such operations we have
freedom to reorganize the elements of the result as long as the reduction of them
stay unchanged. This will enable some reduction pattern recognition during
instruction combine such as SAD/dot-product on X86. A flag is added to
SDNodeFlags to mark those vector reduction nodes to be checked during instruction
combine.
To detect those vector reductions, we search def-use chains starting from the
given instruction, and check if all uses fall into two categories:
1. Reduction with another vector.
2. Reduction on all elements.
in which 2 is detected by recognizing the pattern that the loop vectorizer
generates to reduce all elements in the vector outside of the loop, which
includes several ShuffleVector and one ExtractElement instructions.
Differential revision: http://reviews.llvm.org/D15250
llvm-svn: 261804
This fixes bugs in copy elimination code in llvm. It slightly changes the
semantics of clearRegisterKills(). This is appropriate because:
- Users in lib/CodeGen/MachineCopyPropagation.cpp and
lib/Target/AArch64RedundantCopyElimination.cpp and
lib/Target/SystemZ/SystemZElimCompare.cpp are incorrect without it
(see included testcase).
- All other users in llvm are unaffected (they pass TRI==nullptr)
- (Kill flags are optional anyway so removing too many shouldn't hurt.)
Differential Revision: http://reviews.llvm.org/D17554
llvm-svn: 261763
This is part of the payoff for the refactoring in:
http://reviews.llvm.org/rL261649http://reviews.llvm.org/rL261707
In addition to removing a pile of duplicated code, the xor case was
missing the optimization for vector types because it checked
"SrcTy->isIntegerTy()" rather than "SrcTy->isIntOrIntVectorTy()"
like 'and' and 'or' were already doing.
This solves part of:
https://llvm.org/bugs/show_bug.cgi?id=26702
llvm-svn: 261750
Part 2 of 2
This patch add support for combining target shuffles into blends-with-zero.
Differential Revision: http://reviews.llvm.org/D17483
llvm-svn: 261745
Part 1 of 2
This patch attempts to replace the insertion of zero scalars with a vector blend with zero, avoiding the use of the integer insertion instructions (which are particularly slow on many targets).
(Part 2 will add support for combining multiple blends-with-zero).
Differential Revision: http://reviews.llvm.org/D17483
llvm-svn: 261743
DeleteDeadBlock was called indiscriminately, leading to cleanuprets with
undef cleanuppad references.
Instead, try to drain the BB of most of it's instructions if it is
unreachable. We can then remove the BB if it solely consists of a
terminator (and maybe some phis).
llvm-svn: 261731
We were emitting only one half of a the paired relocations needed for these
instructions because we decided that an offset needed a scattered relocation.
In fact, movw/movt relocations can be paired without being scattered.
llvm-svn: 261679
Implements a mostly-conventional redzone for the userspace
stack. Because we have unsigned load/store offsets we continue to use a
local SP subtracted from the incoming SP but do not write it back to
memory.
Differential Revision: http://reviews.llvm.org/D17525
llvm-svn: 261662
It is problematic if the inlinee has a cleanupret which unwinds to
caller and we inline it into a call site which doesn't unwind.
If the funclet unwinds anywhere other than to the caller,
then we will give the funclet two unwind destinations.
This will result in a verifier failure.
Seeing as how the caller wasn't an invoke (which would locally unwind)
and that the funclet cannot unwind to caller, we must conclude that an
'unwind to caller' cleanupret is dynamically unreachable.
This fixes PR26698.
Differential Revision: http://reviews.llvm.org/D17536
llvm-svn: 261656
Summary:
Fix a bug in epilog generation where the incoming stack arguments were
not being popped for fastcc functions when -tailcallopt was passed.
Reviewers: t.p.northover, mcrosier, jmolloy, rengolin
Subscribers: aemerson, rengolin, mcrosier, llvm-commits
Differential Revision: http://reviews.llvm.org/D16894
llvm-svn: 261650
src1 of s_bfe_u64 is 32-bit (same as s_bfe_i64).
src0 and src1 of s_bfm_b64 are 32-bit.
Update tests.
Review: http://reviews.llvm.org/D17480
Reviewers: arsenm
llvm-svn: 261621
Summary: If a function is hot, put it in text.hot section.
Reviewers: davidxl
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D17532
llvm-svn: 261607
Summary: If a function is hot, put it in text.hot section.
Reviewers: davidxl
Subscribers: eraman, mcrosier, llvm-commits
Differential Revision: http://reviews.llvm.org/D17460
llvm-svn: 261582
Previously the stack pointer was only written back to memory in the
prolog. But this is wrong for dynamic allocas, for which
target-independent codegen handles SP updates after the prolog (and
possibly even in another BB). Instead update the SP global in
ADJCALLSTACKDOWN which is generated after the SP update sequence.
This will have further refinements when we add red zone support.
llvm-svn: 261579
Summary:
Since this is an IR pass it's nice to be able to write tests without
llc. This is the counterpart of the llc test under
CodeGen/PowerPC/loop-data-prefetch.ll.
Reviewers: hfinkel
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D17464
llvm-svn: 261578
The issue was that we only required LCSSA rebuilding if the immediate
parent-loop had values used outside of it. The fix is to enaable the
same logic for all outer loops, not only immediate parent.
llvm-svn: 261575
I don't think this test was intending to test unaligned load/store.
Change it to use the natural alignment to avoid regressing.
Also adds missing SI checks.
llvm-svn: 261571
This flag was part of a migration to a new means of handling vectors-of-points which was described in the llvm-dev thread "FYI: Relocating vector of pointers". The old code path has been off by default for a while without complaints, so time to cleanup.
llvm-svn: 261569
DMB instructions can be expensive, so it's best to avoid them if possible. In
atomicrmw operations there will always be an attempted store so a release
barrier is always needed, but in the cmpxchg case we can delay the DMB until we
know we'll definitely try to perform a store (and so need release semantics).
In the strong cmpxchg case this isn't quite free: we must duplicate the LDREX
instructions to skip the barrier on subsequent iterations. The basic outline
becomes:
ldrex rOld, [rAddr]
cmp rOld, rDesired
bne Ldone
dmb
Lloop:
strex rRes, rNew, [rAddr]
cbz rRes Ldone
ldrex rOld, [rAddr]
cmp rOld, rDesired
beq Lloop
Ldone:
So we'll skip this version for strong operations in "minsize" functions.
llvm-svn: 261568
This change reverts "246133 [RewriteStatepointsForGC] Reduce the number of new instructions for base pointers" and a follow on bugfix 12575.
As pointed out in pr25846, this code suffers from a memory corruption bug. Since I'm (empirically) not going to get back to this any time soon, simply reverting the problematic change is the right answer.
llvm-svn: 261565
LLVM converts adds into ors when it can prove that the operands don't share
any non-zero bits. Teach address folding to recognize or instructions with
constant operands with this property that can be folded into addresses as
if they were adds.
llvm-svn: 261562