Summary: LiveRangeShrink pass moves instruction right after the definition with the same BB if the instruction and its operands all have more than one use. This pass is inexpensive and guarantees optimal live-range within BB.
Reviewers: davidxl, wmi, hfinkel, MatzeB, andreadb
Reviewed By: MatzeB, andreadb
Subscribers: hiraditya, jyknight, sanjoy, skatkov, gberry, jholewinski, qcolombet, javed.absar, krytarowski, atrick, spatel, RKSimon, andreadb, MatzeB, mehdi_amini, mgorny, efriedma, davide, dberlin, llvm-commits
Differential Revision: https://reviews.llvm.org/D32563
llvm-svn: 304371
This also reverts follow-ups r303292 and r303298.
It broke some Chromium tests under MSan, and apparently also internal
tests at Google.
llvm-svn: 303369
Summary: LiveRangeShrink pass moves instruction right after the definition with the same BB if the instruction and its operands all have more than one use. This pass is inexpensive and guarantees optimal live-range within BB.
Reviewers: davidxl, wmi, hfinkel, MatzeB, andreadb
Reviewed By: MatzeB, andreadb
Subscribers: hiraditya, jyknight, sanjoy, skatkov, gberry, jholewinski, qcolombet, javed.absar, krytarowski, atrick, spatel, RKSimon, andreadb, MatzeB, mehdi_amini, mgorny, efriedma, davide, dberlin, llvm-commits
Differential Revision: https://reviews.llvm.org/D32563
llvm-svn: 302938
DAGCombiner already supports peeking thorough shuffles to improve vector element extraction, but legalization often leaves us in situations where we need to extract vector elements after shuffles have already been lowered.
This patch adds support for VECTOR_EXTRACT_ELEMENT/PEXTRW/PEXTRB instructions to attempt to handle target shuffles as well. I've covered some basic scenarios including handling shuffle mask scaling and the implicit zero-extension of PEXTRW/PEXTRB, there is more that could be done here (that I've mentioned in TODOs) but I haven't found many cases where its worth it.
Differential Revision: https://reviews.llvm.org/D30176
llvm-svn: 296381
Seems the execution dependency pass likes to use FP instructions when most of the consuming code is integer if a vextractf128 instruction produced the register. Without AVX2 we don't have the corresponding integer instruction available.
This patch suppresses the domain on these instructions to GenericDomain if AVX2 is not supported so that they are ignored by domain fixing. If AVX2 is supported we'll report the correct domain and allow them to switch between integer and fp.
Overall I think this produces better results in the modified test cases.
llvm-svn: 294824
This is a tiny patch with a big pile of test changes.
This partially fixes PR27885:
https://llvm.org/bugs/show_bug.cgi?id=27885
My motivating case looks like this:
- vpshufd {{.*#+}} xmm1 = xmm1[0,1,0,2]
- vpshufd {{.*#+}} xmm0 = xmm0[0,2,2,3]
- vpblendw {{.*#+}} xmm0 = xmm0[0,1,2,3],xmm1[4,5,6,7]
+ vshufps {{.*#+}} xmm0 = xmm0[0,2],xmm1[0,2]
And this happens several times in the diffs. For chips with domain-crossing penalties,
the instruction count and size reduction should usually overcome any potential
domain-crossing penalty due to using an FP op in a sequence of int ops. For chips such
as recent Intel big cores and Atom, there is no domain-crossing penalty for shufps, so
using shufps is a pure win.
So the test case diffs all appear to be improvements except one test in
vector-shuffle-combining.ll where we miss an opportunity to use a shift to generate
zero elements and one test in combine-sra.ll where multiple uses prevent the expected
shuffle combining.
Differential Revision: https://reviews.llvm.org/D27692
llvm-svn: 289837
Fixes a crash in the build_vector -> vector_shuffle combine
when the first vector input is twice as wide as the output,
and the second input vector is even wider.
llvm-svn: 283953
This generalizes the build_vector -> vector_shuffle combine to support any
number of inputs. The idea is to create a binary tree of shuffles, where
the first layer performs pairwise shuffles of the input vectors placing each
input element into the correct lane, and the rest of the tree blends these
shuffles together.
This doesn't try to be smart and create any sort of "optimal" shuffles.
The assumption is that even a "poor" shuffle sequence is better than extracting
and inserting the elements one by one.
Differential Revision: https://reviews.llvm.org/D24683
llvm-svn: 283480
This allows us to, in some cases, create a vector_shuffle out of a build_vector, when
the inputs to the build are extract_elements from two different vectors, at least one
of which is wider than the output. (E.g. a <8 x i16> being constructed out of
elements from a <16 x i16> and a <8 x i16>).
Differential Revision: https://reviews.llvm.org/D24491
llvm-svn: 281402
This adds more tests for shuffles where the output width does not match
the input width and/or the output is generated from more than two inputs.
llvm-svn: 281005
Prior to this, we could generate a vector_shuffle from an IR shuffle when the
size of the result was exactly the sum of the sizes of the input vectors.
If the output vector was narrower - e.g. a <12 x i8> being formed by a shuffle
with two <8 x i8> inputs - we would lower the shuffle to a sequence of extracts
and inserts.
Instead, we can form a larger vector_shuffle, and then extract a subvector
of the right size - e.g. shuffle the two <8 x i8> inputs into a <16 x i8>
and then extract a <12 x i8>.
This also includes a target-specific X86 combine that in the presence of
AVX2 combines:
(vector_shuffle <mask> (concat_vectors t1, undef)
(concat_vectors t2, undef))
into:
(vector_shuffle <mask> (concat_vectors t1, t2), undef)
in cases where this allows us to form VPERMD/VPERMQ.
(This is not a separate commit, as that pattern does not appear without
the DAGBuilder change.)
llvm-svn: 280418
Adds a baseline test for lowering shuffles where the width of the output
vector is not twice the size of the input vectors. Many of those sequences
are suboptimal, and will hopefully be improved in follow-up patches.
llvm-svn: 279888