Err on the side of brevity and rename (while providing aliases for the original
name) -Wbool-conversions, -Wint-conversions, and -Wvector-conversions for
consistency with constant, literal, string, and sign conversion warnings. And
name the diagnostic groups explicitly while I'm here rather than rewriting the
string in the groups and sema td files.
Curiously, vector-conversion is not under -Wconversion. Perhaps it should be.
llvm-svn: 152776
scoped enumeration members. Later uses of an enumeration temploid as a nested
name specifier should cause its instantiation. Plus some groundwork for
explicit specialization of member enumerations of class templates.
llvm-svn: 152750
The deferred lookup table building step couldn't accurately tell which Decls
should be included in the lookup table, and consequently built different tables
in some cases.
Fix this by removing lazy building of DeclContext name lookup tables. In
practice, the laziness was frequently not worthwhile in C++, because we
performed lookup into most DeclContexts. In C, it had a bit more value,
since there is no qualified lookup.
In the place of lazy lookup table building, we simply don't build lookup tables
for function DeclContexts at all. Such name lookup tables are not useful, since
they don't capture the scoping information required to correctly perform name
lookup in a function scope.
The resulting performance delta is within the noise on my testing, but appears
to be a very slight win for C++ and a very slight loss for C. The C performance
can probably be recovered (if it is a measurable problem) by avoiding building
the lookup table for the translation unit.
llvm-svn: 152608
functions that includes an explicit template argument list, perform
an inner deduction against each of the function templates in that list
and, if successful, use the result of that deduction for the outer
template argument deduction. Fixes PR11713.
llvm-svn: 152575
being defined here: [] () -> struct S {} does not define struct S.
In passing, implement DR1318 (syntactic disambiguation of 'final').
llvm-svn: 152551
defined here, but not semantically, so
new struct S {};
is always ill-formed, even if there is a struct S in scope.
We also had a couple of bugs in ParseOptionalTypeSpecifier caused by it being
under-loved (due to it only being used in a few places) so merge it into
ParseDeclarationSpecifiers with a new DeclSpecContext. To avoid regressing, this
required improving ParseDeclarationSpecifiers' diagnostics in some cases. This
also required teaching ParseSpecifierQualifierList about constexpr... which
incidentally fixes an issue where we'd allow the constexpr specifier in other
bad places.
llvm-svn: 152549
structural comparison of non-dependent types. Otherwise, we end up
rejecting cases where the non-dependent types don't match due to
qualifiers in, e.g., a pointee type. Fixes PR12132.
llvm-svn: 152529
access expression is the start of a template-id, ignore function
templates found in the context of the entire postfix-expression. Fixes
PR11856.
llvm-svn: 152520
basic source character set in C++98. Add -Wc++98-compat diagnostics for same in
literals in C++11. Extend such support to cover string literals as well as
character literals, and mark N2170 as done.
This seems too minor to warrant a release note to me. Let me know if you disagree.
llvm-svn: 152444
starting with an underscore is ill-formed.
Since this rule rejects programs that were using <inttypes.h>'s macros, recover
from this error by treating the ud-suffix as a separate preprocessing-token,
with a DefaultError ExtWarn. The approach of treating such cases as two tokens
is under discussion for standardization, but is in any case a conforming
extension and allows existing codebases to keep building while the committee
makes up its mind.
Reword the warning on the definition of literal operators not starting with
underscores (which are, strangely, legal) to more explicitly state that such
operators can't be called by literals. Remove the special-case diagnostic for
hexfloats, since it was both triggering in the wrong cases and incorrect.
llvm-svn: 152287
analysis to make the AST representation testable. They are represented by a
new UserDefinedLiteral AST node, which is a sugared CallExpr. All semantic
properties, including full CodeGen support, are achieved for free by this
representation.
UserDefinedLiterals can never be dependent, so no custom instantiation
behavior is required. They are mangled as if they were direct calls to the
underlying literal operator. This matches g++'s apparent behavior (but not its
actual mangling, which is broken for literal-operator-ids).
User-defined *string* literals are now fully-operational, but the semantic
analysis is quite hacky and needs more work. No other forms of user-defined
literal are created yet, but the AST support for them is present.
This patch committed after midnight because we had already hit the quota for
new kinds of literal yesterday.
llvm-svn: 152211
grammar requires a string-literal and not a user-defined-string-literal. The
two constructs are still represented by the same TokenKind, in order to prevent
a combinatorial explosion of different kinds of token. A flag on Token tracks
whether a ud-suffix is present, in order to prevent clients from needing to look
at the token's spelling.
llvm-svn: 152098
early, since their values can be used in constant expressions in C++11. For
odr-use checking, the opposite change is required, since references are
odr-used whether or not they satisfy the requirements for appearing in a
constant expression.
llvm-svn: 151881
- variant members with nontrivial destructors make the containing class's
destructor deleted
- check for a virtual destructor after checking for overridden methods in the
base class(es)
- check for an inaccessible operator delete for a class with a virtual
destructor.
Do not try to call an anonymous union field's destructor from the destructor of
the containing class.
llvm-svn: 151483
trivial if the implicit declaration would be. Don't forget to set the Trivial
flag on the special member as well as on the class. It doesn't seem ideal that
we have two separate mechanisms for storing this information, but this patch
does not attempt to address that.
This leaves us in an interesting position where the has_trivial_X trait for a
class says 'yes' for a deleted but trivial X, but is_trivially_Xable says 'no'.
This seems to be what the standard requires.
llvm-svn: 151465
explicit conversion functions to initialize the argument to a
copy/move constructor that itself is the subject of direct
initialization. Since we don't have that much context in overload
resolution, we end up threading more flags :(.
Fixes <rdar://problem/10903741> / PR10456.
llvm-svn: 151409
lambda closure type's function pointer conversion over user-defined
conversion via a lambda closure type's block pointer conversion,
always. This is a preference for more-standard code (since blocks
are an extension) and a nod to efficiency, since function pointers
don't require any memory management. Fixes PR12063.
llvm-svn: 151170
block pointer that returns a block literal which captures (by copy)
the lambda closure itself. Some aspects of the block literal are left
unspecified, namely the capture variable (which doesn't actually
exist) and the body (which will be filled in by IRgen because it can't
be written as an AST).
Because we're switching to this model, this patch also eliminates
tracking the copy-initialization expression for the block capture of
the conversion function, since that information is now embedded in the
synthesized block literal. -1 side tables FTW.
llvm-svn: 151131
function call (or a comma expression with a function call on its right-hand
side), possibly parenthesized, then the return type is not required to be
complete and a temporary is not bound. Other subexpressions inside a decltype
expression do not get this treatment.
This is implemented by deferring the relevant checks for all calls immediately
within a decltype expression, then, when the expression is fully-parsed,
checking the relevant constraints and stripping off any top-level temporary
binding.
Deferring the completion of the return type exposed a bug in overload
resolution where completion of the argument types was not attempted, which
is also fixed by this change.
llvm-svn: 151117
that 'this' can be used in the brace-or-equal-initializer of a
non-static data member, and C++11 [expr.prim.lambda]p9, which says
that lambda expressions not in block scope can have no captures, side
fully with C++11 [expr.prim.general]p4 by allowing 'this' to be
captured within these initializers. This seems to be the intent of
non-static data member initializers.
llvm-svn: 151101
arguments. There are two aspects to this:
- Make sure that when marking the declarations referenced in a
default argument, we don't try to mark local variables, both because
it's a waste of time and because the semantics are wrong: we're not
in a place where we could capture these variables again even if it
did make sense.
- When a lambda expression occurs in a default argument of a
function template, make sure that the corresponding closure type is
considered dependent, so that it will get properly instantiated. The
second bit is a bit of a hack; to fix it properly, we may have to
rearchitect our handling of default arguments, parsing them only
after creating the function definition. However, I'd like to
separate that work from the lambdas work.
llvm-svn: 151076
explicit specialization of a function template, mark the instantiation as
constexpr if the specialization is, rather than requiring them to match.
llvm-svn: 151001
eliminating a bunch of redundant code and properly modeling how the
captures of outside blocks/lambdas affect the types seen by inner
captures.
This new scheme makes two passes over the capturing scope stack. The
first pass goes up the stack (from innermost to outermost), assessing
whether the capture looks feasible and stopping when it either hits
the scope where the variable is declared or when it finds an existing
capture. The second pass then walks down the stack (from outermost to
innermost), capturing the variable at each step and updating the
captured type and the type that an expression referring to that
captured variable would see. It also checks type-specific
restrictions, such as the inability to capture an array within a
block. Note that only the first odr-use of each
variable needs to do the full walk; subsequent uses will find the
capture immediately, so multiple walks need not occur.
The same routine that builds the captures can also compute the type of
the captures without signaling errors and without actually performing
the capture. This functionality is used to determine the type of
declaration references as well as implementing the weird decltype((x))
rule within lambda expressions.
The capture code now explicitly takes sides in the debate over C++
core issue 1249, which concerns the type of captures within nested
lambdas. We opt to use the more permissive, more useful definition
implemented by GCC rather than the one implemented by EDG.
llvm-svn: 150875