We normally select these when the root node is a sext_inreg, but
SimplifyDemandedBits can sometimes bypass the sext_inreg for some
users. This can create situation where sext_inreg+add/sub/mul/shl
is selected to a W instruction, and then the add/sub/mul/shl is
separately selected to a non-W instruction with the same inputs.
This patch tries to detect when it would still be ok to use a W
instruction without the sext_inreg by checking the direct users.
This can allow the W instruction to CSE with one created for a
sext_inreg+add/sub/mul/shl. To minimize complexity and cost of
checking, we make no attempt to determine if the CSE will happen
and just always use a W instruction when we can.
Differential Revision: https://reviews.llvm.org/D107658
If we're not emitting separate fences for the success/failure cases, we
need to pass the merged ordering to the target so it can emit the
correct instructions.
For the PowerPC testcase, we end up with extra fences, but that seems
like an improvement over missing fences. If someone wants to improve
that, the PowerPC backed could be taught to emit the fences after isel,
instead of depending on fences emitted by AtomicExpand.
Fixes https://bugs.llvm.org/show_bug.cgi?id=33332 .
Differential Revision: https://reviews.llvm.org/D103342
If a cmpxchg specifies acquire or seq_cst on failure, make sure we
generate code consistent with that ordering even if the success ordering
is not acquire/seq_cst.
At one point, it was ambiguous whether this sort of construct was valid,
but the C++ standad and LLVM now accept arbitrary combinations of
success/failure orderings.
This doesn't address the corresponding issue in AtomicExpand. (This was
reported as https://bugs.llvm.org/show_bug.cgi?id=33332 .)
Fixes https://bugs.llvm.org/show_bug.cgi?id=50512.
Differential Revision: https://reviews.llvm.org/D103284
In d2927f786e, I added patterns
to remove (and X, 31) from sllw/srlw/sraw shift amounts.
There is code in SelectionDAGISel.cpp that knows to use
computeKnownBits to fill in bits of the mask that were removed
by SimplifyDemandedBits based on bits being known zero.
The non-W shift patterns use immbottomxlenset which allows the
mask to have more than log2(xlen) trailing ones, but doesn't
have a call to computeKnownBits to fill in bits of the mask that may
have been cleared by SimplifyDemandedBits.
This patch copies code from X86 to handle more than log2(xlen)
bottom bits set and uses computeKnownBits to fill in missing bits
before counting.
Reviewed By: luismarques
Differential Revision: https://reviews.llvm.org/D95422
We try to do this during DAG combine with SimplifyDemandedBits,
but it fails if there are multiple nodes using the AND. For
example, multiple shifts using the same shift amount.
This alias for andi x, 255 was recently added to the spec. If we
print it, code we output can't be compiled with -fno-integrated-as
unless the GNU assembler is also a version that supports alias.
Reviewed By: lenary
Differential Revision: https://reviews.llvm.org/D93826
There is an in-progress proposal for the following pseudo-instructions
in the assembler, to complement the existing `sext.w` rv64i instruction:
- sext.b
- sext.h
- zext.b
- zext.h
- zext.w
The `.b` and `.h` variants are available with rv32i and rv64i, and `zext.w` is
only available with `rv64i`.
These are implemented primarily as pseudo-instructions, as these instructions
expand to multiple real instructions. In the case of `zext.b`, this expands to a
single rv32/64i instruction, so it is implemented with an InstAlias (like
`sext.w` is on rv64i).
The proposal is available here: https://github.com/riscv/riscv-asm-manual/pull/61
Reviewed By: asb
Differential Revision: https://reviews.llvm.org/D92793
Regenerated using:
./llvm/utils/update_llc_test_checks.py -u llvm/test/CodeGen/RISCV/*.ll
This has added comments to spill-related instructions and added @plt to
some symbols.
Differential Revision: https://reviews.llvm.org/D92841
Summary:
Currently, the comparison argument used for ATOMIC_CMP_XCHG is legalised
with GetPromotedInteger, which leaves the upper bits of the value
undefind. Since this is used for comparing in an LR/SC loop with a
full-width comparison, we must sign extend it. We introduce a new
getExtendForAtomicCmpSwapArg to complement getExtendForAtomicOps, since
many targets have compare-and-swap instructions (or pseudos) that
correctly handle an any-extend input, and the existing function
determines the extension of the result, whereas we are concerned with
the input.
This is related to https://reviews.llvm.org/D58829, which solved the
issue for ATOMIC_CMP_SWAP_WITH_SUCCESS, but not the simpler
ATOMIC_CMP_SWAP.
Reviewers: asb, lenary, efriedma
Reviewed By: asb
Subscribers: arichardson, hiraditya, rbar, johnrusso, simoncook, sabuasal, niosHD, kito-cheng, shiva0217, MaskRay, zzheng, edward-jones, rogfer01, MartinMosbeck, brucehoult, the_o, rkruppe, jfb, PkmX, jocewei, psnobl, benna, Jim, s.egerton, pzheng, sameer.abuasal, apazos, luismarques, evandro, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D74453
Most of the test changes are trivial instruction reorderings and differing
register allocations, without any obvious performance impact.
Differential Revision: https://reviews.llvm.org/D66973
llvm-svn: 372106
The previous DAG combiner-based approach had an issue with infinite loops
between the target-dependent and target-independent combiner logic (see
PR40333). Although this was worked around in rL351806, the combiner-based
approach is still potentially brittle and can fail to select the 32-bit shift
variant when profitable to do so, as demonstrated in the pr40333.ll test case.
This patch instead introduces target-specific SelectionDAG nodes for
SHLW/SRLW/SRAW and custom-lowers variable i32 shifts to them. pr40333.ll is a
good example of how this approach can improve codegen.
This adds DAG combine that does SimplifyDemandedBits on the operands (only
lower 32-bits of first operand and lower 5 bits of second operand are read).
This seems better than implementing SimplifyDemandedBitsForTargetNode as there
is no guarantee that would be called (and it's not for e.g. the anyext return
test cases). Also implements ComputeNumSignBitsForTargetNode.
There are codegen changes in atomic-rmw.ll and atomic-cmpxchg.ll but the new
instruction sequences are semantically equivalent.
Differential Revision: https://reviews.llvm.org/D57085
llvm-svn: 352169
In order to support codegen RV64A, this patch:
* Introduces masked atomics intrinsics for atomicrmw operations and cmpxchg
that use the i64 type. These are ultimately lowered to masked operations
using lr.w/sc.w, but we need to use these alternate intrinsics for RV64
because i32 is not legal
* Modifies RISCVExpandPseudoInsts.cpp to handle PseudoAtomicLoadNand64 and
PseudoCmpXchg64
* Modifies the AtomicExpandPass hooks in RISCVTargetLowering to sext/trunc as
needed for RV64 and to select the i64 intrinsic IDs when necessary
* Adds appropriate patterns to RISCVInstrInfoA.td
* Updates test/CodeGen/RISCV/atomic-*.ll to show RV64A support
This ends up being a fairly mechanical change, as the logic for RV32A is
effectively reused.
Differential Revision: https://reviews.llvm.org/D53233
llvm-svn: 351422
Utilise a similar ('late') lowering strategy to D47882. The changes to
AtomicExpandPass allow this strategy to be utilised by other targets which
implement shouldExpandAtomicCmpXchgInIR.
All cmpxchg are lowered as 'strong' currently and failure ordering is ignored.
This is conservative but correct.
Differential Revision: https://reviews.llvm.org/D48131
llvm-svn: 347914
This patch adds lowering for atomic fences and relies on AtomicExpandPass to
lower atomic loads/stores, atomic rmw, and cmpxchg to __atomic_* libcalls.
test/CodeGen/RISCV/atomic-* are modelled on the exhaustive
test/CodeGen/PPC/atomics-regression.ll, and will prove more useful once RV32A
codegen support is introduced.
Fence mappings are taken from table A.6 in the current draft of version 2.3 of
the RISC-V Instruction Set Manual, which incorporates the memory model changes
and definitions contributed by the RISC-V Memory Consistency Model task group.
Differential Revision: https://reviews.llvm.org/D47587
llvm-svn: 334590