- reject definitions of enums within friend declarations
- require 'enum', not 'enum class', for non-declaring references to scoped
enumerations
llvm-svn: 147824
Explicit instantiations following specializations are no-ops and hence have
no PointOfInstantiation. That was done correctly in most cases, but for a
specialization -> instantiation decl -> instantiation definition chain, the
definition didn't realize that it was a no-op. Fix that.
Also, when printing diagnostics for these no-ops, get the diag location from
the decl name location.
Add many test cases, one of them not yet passing (but it failed the same way
before this change). Fixes http://llvm.org/pr11558 and more.
llvm-svn: 147225
visibility restrictions. This ensures that all declarations of the
same entity end up in the same redeclaration chain, even if some of
those declarations aren't visible. While this may seem unfortunate to
some---why can't two C modules have different functions named
'f'?---it's an acknowedgment that a module does not introduce a new
"namespace" of names.
As part of this, stop merging the 'module-private' bit from previous
declarations to later declarations, because we want each declaration
in a module to stand on its own because this can effect, for example,
submodule visibility.
Note that this notion of names that are invisible to normal name
lookup but are available for redeclaration lookups is how we should
implement friend declarations and extern declarations within local
function scopes. I'm not tackling that problem now.
llvm-svn: 146980
default", make a note of which is used when creating the
initial declaration. Previously, we would wait until later to handle
default/delete as a definition, but this is too late: when adding the
declaration, we already treated the declaration as "user-provided"
when in fact it was merely "user-declared".
Fixes PR10861 and PR10442, along with a bunch of FIXMEs.
llvm-svn: 144011
definition, we may not have a scope corresponding to the namespace
where that friend function template actually lives. Work around this
issue by faking up a scope with the appropriate DeclContext.
This is a bit of a hack, but it fixes <rdar://problem/10204947>.
llvm-svn: 143614
does not match any declaration in the class (or class template), be
sure to mark it as invalid. Fixes PR10924 / <rdar://problem/10119422>.
llvm-svn: 143504
rvalue. An assertion to catch this is in ImpCastExprToType will follow, but
vector operations currently trip over this (due to omitting the usual arithmetic
conversions). Also add an assert to catch missing lvalue-to-rvalue conversions
on the LHS of ->.
llvm-svn: 143155
Microsoft __if_exists/__if_not_exists statement. Also note that we
weren't traversing DeclarationNameInfo *at all* within the
RecursiveASTVisitor, which would be rather fatal for variadic
templates.
llvm-svn: 142906
shadows a template parameter. Complain about the shadowing (or not,
under -fms-extensions), but don't invalidate the declaration. Merely
forget about the template parameter declaration.
llvm-svn: 142596
the right namespace in C++11 mode. Teach the code to prefer the 'must be in
precisely this namespace' diagnostic whenever that's true, and fix a defect
which resulted in the -Wc++11-compat warning in C++98 mode sometimes being
omitted.
llvm-svn: 142329
Much to everyone's surprise, the default constructor for TypeResult produces
an instance with Invalid == false. This seems like a decision we may want to
revisit.
llvm-svn: 138601
Example:
template <class T>
class A {
public:
template <class U> void f(U p) { }
template <> void f(int p) { } // <== class scope specialization
};
This extension is necessary to parse MSVC standard C++ headers, MFC and ATL code.
BTW, with this feature in, clang can parse (-fsyntax-only) all the MSVC 2010 standard header files without any error.
llvm-svn: 137573
a member template, e.g.,
x.f<int>
if we have found a template in the type of x, but the lookup in the
current scope is ambiguous, just ignore the lookup in the current
scope. Fixes <rdar://problem/9915664>.
llvm-svn: 137255
which is required given the current setup for template
argument deduction substitution validation, and add a test
case to make sure we don't break it in the future.
llvm-svn: 135262
to represent a fully-substituted non-type template parameter.
This should improve source fidelity, as well as being generically
useful for diagnostics and such.
llvm-svn: 135243
type/expression/template argument/etc. is instantiation-dependent if
it somehow involves a template parameter, even if it doesn't meet the
requirements for the more common kinds of dependence (dependent type,
type-dependent expression, value-dependent expression).
When we see an instantiation-dependent type, we know we always need to
perform substitution into that instantiation-dependent type. This
keeps us from short-circuiting evaluation in places where we
shouldn't, and lets us properly implement C++0x [temp.type]p2.
In theory, this would also allow us to properly mangle
instantiation-dependent-but-not-dependent decltype types per the
Itanium C++ ABI, but we aren't quite there because we still mangle
based on the canonical type in cases like, e.g.,
template<unsigned> struct A { };
template<typename T>
void f(A<sizeof(sizeof(decltype(T() + T())))>) { }
template void f<int>(A<sizeof(sizeof(int))>);
and therefore get the wrong answer.
llvm-svn: 134225
for a template template parameter.
Uses to follow.
I've also made the uniquing of SubstTemplateTemplateParmPacks
use a ContextualFoldingSet as a minor space efficiency.
llvm-svn: 134137
vector<int>
to
std::vector<int>
Patch by Kaelyn Uhrain, with minor tweaks + PCH support from me. Fixes
PR5776/<rdar://problem/8652971>.
Thanks Kaelyn!
llvm-svn: 134007
ownership-unqualified retainable object type as __strong. This allows
us to write, e.g.,
std::vector<id>
and we'll infer that the vector's element types have __strong
ownership semantics, which is far nicer than requiring:
std::vector<__strong id>
Note that we allow one to override the ownership qualifier of a
substituted template type parameter, e.g., given
template<typename T>
struct X {
typedef __weak T type;
};
X<id> is treated the same as X<__strong id>. At instantiation type,
the __weak in "__weak T" overrides the (inferred or specified)
__strong on the template argument type, so that we can still provide
metaprogramming transformations.
This is part of <rdar://problem/9595486>.
llvm-svn: 133303
Language-design credit goes to a lot of people, but I particularly want
to single out Blaine Garst and Patrick Beard for their contributions.
Compiler implementation credit goes to Argyrios, Doug, Fariborz, and myself,
in no particular order.
llvm-svn: 133103
before the template parameters have acquired a proper context (e.g.,
because the enclosing context has yet to be built), provide empty
parameter lists for all outer template parameter scopes to inhibit any
substitution for those template parameters. Fixes PR9643 /
<rdar://problem/9251019>.
llvm-svn: 133055