In case of loops with multiple exit where all-but-one exit are deoptimizing
it might happen that the first rotation will end up with latch having a deoptimizing
exit. This makes the loop unsuitable for trip-count analysis (say, getLoopEstimatedTripCount)
as well as for loop transformations that know how to handle multple deoptimizing exits.
It pretty much means that canonical form in multple-deoptimizing-exits case should be
with non-deoptimizing exit at latch.
Teach loop-rotation to reach this canonical form by repeating rotation.
-loop-rotate-multi option introduced to control this behavior, currently disabled by default.
Reviewers: skatkov, asbirlea, reames, fhahn
Reviewed By: skatkov
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D73058
Summary:
In commit d60f34c20a (llvm-svn 317128,
PR35113) MergeBlockIntoPredecessor was changed into
discarding some dbg.value intrinsics referring to
PHI values, post-splice due to loop rotation.
That elimination of dbg.value intrinsics did not
consider which dbg.value to keep depending on the
context (e.g. if the variable is changing its value
several times inside the basic block).
In the past that hasn't been such a big problem since
CodeGenPrepare::placeDbgValues has moved the dbg.value
to be next to the PHI node anyway. But after commit
00e238896c CodeGenPrepare isn't doing that
any longer, so we need to be more careful when avoiding
duplicate dbg.value intrinsics in MergeBlockIntoPredecessor.
This patch replaces the code that tried to avoid duplicate
dbg.values by using the RemoveRedundantDbgInstrs helper.
Reviewers: aprantl, jmorse, vsk
Reviewed By: aprantl, vsk
Subscribers: jholewinski, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D71480
Summary:
In commit d60f34c20a (llvm-svn 317128,
PR35113) MergeBlockIntoPredecessor was changed into
discarding some dbg.value intrinsics referring to
PHI values, post-splice due to loop rotation.
That elimination of dbg.value intrinsics does not
consider which dbg.value to keep based on the context.
Such as always keeping the one that comes first textually,
or the need to keep several of them in case the variable
is changing it's value several times inside the basic block.
In the past that hasn't been such a big problem since
CodeGenPrepare::placeDbgValues has moved the dbg.value
to be next to the PHI node anyway. But after commit
00e238896c CodeGenPrepare isn't doing that
any longer, so we need to be more careful when avoiding
duplicate dbg.value intrinsics in MergeBlockIntoPredecessor.
This patch is just a pre commit of the test case.
Subscribers: llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D71479
Summary:
Add a flag to the FunctionToLoopAdaptor that allows enabling MemorySSA only for the loop pass managers that are known to preserve it.
If an LPM is known to have only loop transforms that *all* preserve MemorySSA, then use MemorySSA if `EnableMSSALoopDependency` is set.
If an LPM has loop passes that do not preserve MemorySSA, then the flag passed is `false`, regardless of the value of `EnableMSSALoopDependency`.
When using a custom loop pass pipeline via `passes=...`, use keyword `loop` vs `loop-mssa` to use MemorySSA in that LPM. If a loop that does not preserve MemorySSA is added while using the `loop-mssa` keyword, that's an error.
Add the new `loop-mssa` keyword to a few tests where a difference occurs when enabling MemorySSA.
Reviewers: chandlerc
Subscribers: mehdi_amini, Prazek, george.burgess.iv, sanjoy.google, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66376
llvm-svn: 369548
As it's causing some bot failures (and per request from kbarton).
This reverts commit r358543/ab70da07286e618016e78247e4a24fcb84077fda.
llvm-svn: 358546
Summary:
While implementing inlining support for callbr
(https://bugs.llvm.org/show_bug.cgi?id=40722), I hit a crash in Loop
Rotation when trying to build the entire x86 Linux kernel
(drivers/char/random.c). This is a small fix up to r353563.
Test case is drivers/char/random.c (with callbr's inlined), then ran
through creduce, then `opt -opt-bisect-limit=<limit>`, then bugpoint.
Thanks to Craig Topper for immediately spotting the fix, and teaching me
how to fish.
Reviewers: craig.topper, jyknight
Reviewed By: craig.topper
Subscribers: hiraditya, llvm-commits, srhines
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D58929
llvm-svn: 355564
compiler identification lines in test-cases.
(Doing so only because it's then easier to search for references which
are actually important and need fixing.)
llvm-svn: 351200
Pass Execution Instrumentation interface enables customizable instrumentation
of pass execution, as per "RFC: Pass Execution Instrumentation interface"
posted 06/07/2018 on llvm-dev@
The intent is to provide a common machinery to implement all
the pass-execution-debugging features like print-before/after,
opt-bisect, time-passes etc.
Here we get a basic implementation consisting of:
* PassInstrumentationCallbacks class that handles registration of callbacks
and access to them.
* PassInstrumentation class that handles instrumentation-point interfaces
that call into PassInstrumentationCallbacks.
* Callbacks accept StringRef which is just a name of the Pass right now.
There were some ideas to pass an opaque wrapper for the pointer to pass instance,
however it appears that pointer does not actually identify the instance
(adaptors and managers might have the same address with the pass they govern).
Hence it was decided to go simple for now and then later decide on what the proper
mental model of identifying a "pass in a phase of pipeline" is.
* Callbacks accept llvm::Any serving as a wrapper for const IRUnit*, to remove direct dependencies
on different IRUnits (e.g. Analyses).
* PassInstrumentationAnalysis analysis is explicitly requested from PassManager through
usual AnalysisManager::getResult. All pass managers were updated to run that
to get PassInstrumentation object for instrumentation calls.
* Using tuples/index_sequence getAnalysisResult helper to extract generic AnalysisManager's extra
args out of a generic PassManager's extra args. This is the only way I was able to explicitly
run getResult for PassInstrumentationAnalysis out of a generic code like PassManager::run or
RepeatedPass::run.
TODO: Upon lengthy discussions we agreed to accept this as an initial implementation
and then get rid of getAnalysisResult by improving RepeatedPass implementation.
* PassBuilder takes PassInstrumentationCallbacks object to pass it further into
PassInstrumentationAnalysis. Callbacks registration should be performed directly
through PassInstrumentationCallbacks.
* new-pm tests updated to account for PassInstrumentationAnalysis being run
* Added PassInstrumentation tests to PassBuilderCallbacks unit tests.
Other unit tests updated with registration of the now-required PassInstrumentationAnalysis.
Made getName helper to return std::string (instead of StringRef initially) to fix
asan builtbot failures on CGSCC tests.
Reviewers: chandlerc, philip.pfaffe
Differential Revision: https://reviews.llvm.org/D47858
llvm-svn: 342664
Pass Execution Instrumentation interface enables customizable instrumentation
of pass execution, as per "RFC: Pass Execution Instrumentation interface"
posted 06/07/2018 on llvm-dev@
The intent is to provide a common machinery to implement all
the pass-execution-debugging features like print-before/after,
opt-bisect, time-passes etc.
Here we get a basic implementation consisting of:
* PassInstrumentationCallbacks class that handles registration of callbacks
and access to them.
* PassInstrumentation class that handles instrumentation-point interfaces
that call into PassInstrumentationCallbacks.
* Callbacks accept StringRef which is just a name of the Pass right now.
There were some ideas to pass an opaque wrapper for the pointer to pass instance,
however it appears that pointer does not actually identify the instance
(adaptors and managers might have the same address with the pass they govern).
Hence it was decided to go simple for now and then later decide on what the proper
mental model of identifying a "pass in a phase of pipeline" is.
* Callbacks accept llvm::Any serving as a wrapper for const IRUnit*, to remove direct dependencies
on different IRUnits (e.g. Analyses).
* PassInstrumentationAnalysis analysis is explicitly requested from PassManager through
usual AnalysisManager::getResult. All pass managers were updated to run that
to get PassInstrumentation object for instrumentation calls.
* Using tuples/index_sequence getAnalysisResult helper to extract generic AnalysisManager's extra
args out of a generic PassManager's extra args. This is the only way I was able to explicitly
run getResult for PassInstrumentationAnalysis out of a generic code like PassManager::run or
RepeatedPass::run.
TODO: Upon lengthy discussions we agreed to accept this as an initial implementation
and then get rid of getAnalysisResult by improving RepeatedPass implementation.
* PassBuilder takes PassInstrumentationCallbacks object to pass it further into
PassInstrumentationAnalysis. Callbacks registration should be performed directly
through PassInstrumentationCallbacks.
* new-pm tests updated to account for PassInstrumentationAnalysis being run
* Added PassInstrumentation tests to PassBuilderCallbacks unit tests.
Other unit tests updated with registration of the now-required PassInstrumentationAnalysis.
Reviewers: chandlerc, philip.pfaffe
Differential Revision: https://reviews.llvm.org/D47858
llvm-svn: 342597
Summary:
Pass Execution Instrumentation interface enables customizable instrumentation
of pass execution, as per "RFC: Pass Execution Instrumentation interface"
posted 06/07/2018 on llvm-dev@
The intent is to provide a common machinery to implement all
the pass-execution-debugging features like print-before/after,
opt-bisect, time-passes etc.
Here we get a basic implementation consisting of:
* PassInstrumentationCallbacks class that handles registration of callbacks
and access to them.
* PassInstrumentation class that handles instrumentation-point interfaces
that call into PassInstrumentationCallbacks.
* Callbacks accept StringRef which is just a name of the Pass right now.
There were some ideas to pass an opaque wrapper for the pointer to pass instance,
however it appears that pointer does not actually identify the instance
(adaptors and managers might have the same address with the pass they govern).
Hence it was decided to go simple for now and then later decide on what the proper
mental model of identifying a "pass in a phase of pipeline" is.
* Callbacks accept llvm::Any serving as a wrapper for const IRUnit*, to remove direct dependencies
on different IRUnits (e.g. Analyses).
* PassInstrumentationAnalysis analysis is explicitly requested from PassManager through
usual AnalysisManager::getResult. All pass managers were updated to run that
to get PassInstrumentation object for instrumentation calls.
* Using tuples/index_sequence getAnalysisResult helper to extract generic AnalysisManager's extra
args out of a generic PassManager's extra args. This is the only way I was able to explicitly
run getResult for PassInstrumentationAnalysis out of a generic code like PassManager::run or
RepeatedPass::run.
TODO: Upon lengthy discussions we agreed to accept this as an initial implementation
and then get rid of getAnalysisResult by improving RepeatedPass implementation.
* PassBuilder takes PassInstrumentationCallbacks object to pass it further into
PassInstrumentationAnalysis. Callbacks registration should be performed directly
through PassInstrumentationCallbacks.
* new-pm tests updated to account for PassInstrumentationAnalysis being run
* Added PassInstrumentation tests to PassBuilderCallbacks unit tests.
Other unit tests updated with registration of the now-required PassInstrumentationAnalysis.
Reviewers: chandlerc, philip.pfaffe
Differential Revision: https://reviews.llvm.org/D47858
llvm-svn: 342544
In order to set breakpoints on labels and list source code around
labels, we need collect debug information for labels, i.e., label
name, the function label belong, line number in the file, and the
address label located. In order to keep these information in LLVM
IR and to allow backend to generate debug information correctly.
We create a new kind of metadata for labels, DILabel. The format
of DILabel is
!DILabel(scope: !1, name: "foo", file: !2, line: 3)
We hope to keep debug information as much as possible even the
code is optimized. So, we create a new kind of intrinsic for label
metadata to avoid the metadata is eliminated with basic block.
The intrinsic will keep existing if we keep it from optimized out.
The format of the intrinsic is
llvm.dbg.label(metadata !1)
It has only one argument, that is the DILabel metadata. The
intrinsic will follow the label immediately. Backend could get the
label metadata through the intrinsic's parameter.
We also create DIBuilder API for labels to be used by Frontend.
Frontend could use createLabel() to allocate DILabel objects, and use
insertLabel() to insert llvm.dbg.label intrinsic in LLVM IR.
Differential Revision: https://reviews.llvm.org/D45024
Patch by Hsiangkai Wang.
llvm-svn: 331841
LoopRotate only invalidates innermost loops while the changes that it makes may
also affert any of this parents. With patch rL329047, SCEV becomes much smarter
about calculation of exit counts for outer loops, so we cannot assume that they are
not affected.
Differential Revision: https://reviews.llvm.org/D45945
llvm-svn: 330582
If a loop has a loop exiting latch, it can be profitable
to rotate the loop if it leads to the simplification of
a phi node. Perform rotation in these cases even if loop
rotate itself didnt simplify the loop to get there.
Differential Revision: https://reviews.llvm.org/D44199
llvm-svn: 328933
Summary:
New pass manager driver passes DebugPM (-debug-pass-manager) flag into
individual PassManager constructors in order to enable debug logging.
FunctionToLoopPassAdaptor has its own internal LoopCanonicalizationPM
which never gets its debug logging enabled and that means canonicalization
passes like LoopSimplify are never present in -debug-pass-manager output.
Extending FunctionToLoopPassAdaptor's constructor and
createFunctionToLoopPassAdaptor wrapper with an optional
boolean DebugLogging argument.
Passing debug-logging flags there as appropriate.
Reviewers: chandlerc, davide
Reviewed By: davide
Subscribers: mehdi_amini, eraman, llvm-commits, JDevlieghere
Differential Revision: https://reviews.llvm.org/D41586
llvm-svn: 321548
Simplifying a loop latch changes the IR and we need to make sure the pass manager knows to invalidate analysis passes if that happened.
PR35210 discovered a case where we failed to invalidate the post dominator tree after this simplification because we no changes other than simplifying the loop latch.
Fixes PR35210.
Differential Revision: https://reviews.llvm.org/D40035
llvm-svn: 318237
Summary:
Most DIExpressions are empty or very simple. When they are complex, they
tend to be unique, so checking them inline is reasonable.
This also avoids the need for CodeGen passes to append to the
llvm.dbg.mir named md node.
See also PR22780, for making DIExpression not be an MDNode.
Reviewers: aprantl, dexonsmith, dblaikie
Subscribers: qcolombet, javed.absar, eraman, hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D37075
llvm-svn: 311594
There is no situation where this rarely-used argument cannot be
substituted with a DIExpression and removing it allows us to simplify
the DWARF backend. Note that this patch does not yet remove any of
the newly dead code.
rdar://problem/33580047
Differential Revision: https://reviews.llvm.org/D35951
llvm-svn: 309426
Summary:
LoopRotate manually updates the DoomTree by iterating over all predecessors of a basic block and computing the Nearest Common Dominator.
When a predecessor happens to be unreachable, `DT.findNearestCommonDominator` returns nullptr.
This patch teaches LoopRotate to handle this case and fixes [[ https://bugs.llvm.org/show_bug.cgi?id=33701 | PR33701 ]].
In the future, LoopRotate should be taught to use the new incremental API for updating the DomTree.
Reviewers: dberlin, davide, uabelho, grosser
Subscribers: efriedma, mzolotukhin
Differential Revision: https://reviews.llvm.org/D35074
llvm-svn: 307828
Recommitting patch which was previously reverted in r297159. These
changes should address the casting issues.
The original patch enables dbg.value intrinsics to be attached to
newly inserted PHI nodes.
Differential Review: https://reviews.llvm.org/D30701
llvm-svn: 297269
After r289755, the AssumptionCache is no longer needed. Variables affected by
assumptions are now found by using the new operand-bundle-based scheme. This
new scheme is more computationally efficient, and also we need much less
code...
llvm-svn: 289756
The LoopPassManager needs to calculate the loops analysis in order to
iterate over the loops at all. Requiring it is redundant and just adds
noise to the RUN lines here.
llvm-svn: 269097
Loop rotation clones instruction from the old header into the preheader. If
there were uses of values produced by these instructions that were outside
the loop, we have to insert PHI nodes to merge the two values. If the values
are used by DbgIntrinsics they will be used as a MetadataAsValue of a
ValueAsMetadata of the original values, and iterating all of the uses of the
original value will not update the DbgIntrinsics. The new code checks if the
values are used by DbgIntrinsics and if so, updates them using essentially
the same logic as the original code.
The attached testcase demonstrates the issue. Without the fix, the
DbgIntrinic outside the loop uses values computed inside the loop, even
though these values do not dominate the DbgIntrinsic.
Author: Thomas Jablin (tjablin)
Reviewers: dblaikie aprantl kbarton hfinkel cycheng
http://reviews.llvm.org/D19564
llvm-svn: 269034
Currently each Function points to a DISubprogram and DISubprogram has a
scope field. For member functions the scope is a DICompositeType. DIScopes
point to the DICompileUnit to facilitate type uniquing.
Distinct DISubprograms (with isDefinition: true) are not part of the type
hierarchy and cannot be uniqued. This change removes the subprograms
list from DICompileUnit and instead adds a pointer to the owning compile
unit to distinct DISubprograms. This would make it easy for ThinLTO to
strip unneeded DISubprograms and their transitively referenced debug info.
Motivation
----------
Materializing DISubprograms is currently the most expensive operation when
doing a ThinLTO build of clang.
We want the DISubprogram to be stored in a separate Bitcode block (or the
same block as the function body) so we can avoid having to expensively
deserialize all DISubprograms together with the global metadata. If a
function has been inlined into another subprogram we need to store a
reference the block containing the inlined subprogram.
Attached to https://llvm.org/bugs/show_bug.cgi?id=27284 is a python script
that updates LLVM IR testcases to the new format.
http://reviews.llvm.org/D19034
<rdar://problem/25256815>
llvm-svn: 266446
This mostly cosmetic patch moves the DebugEmissionKind enum from DIBuilder
into DICompileUnit. DIBuilder is not the right place for this enum to live
in — a metadata consumer should not have to include DIBuilder.h.
I also added a Verifier check that checks that the emission kind of a
DICompileUnit is actually legal.
http://reviews.llvm.org/D18612
<rdar://problem/25427165>
llvm-svn: 265077
Summary:
Calls to convergent functions can be duplicated, but only if the
duplicates are not control-flow dependent on any additional values.
Loop rotation doesn't meet the bar.
Reviewers: jingyue
Subscribers: mzolotukhin, llvm-commits, arsenm, joker.eph, resistor, tra, hfinkel, broune
Differential Revision: http://reviews.llvm.org/D17127
llvm-svn: 260729
Previously, subprograms contained a metadata reference to the function they
described. Because most clients need to get or set a subprogram for a given
function rather than the other way around, this created unneeded inefficiency.
For example, many passes needed to call the function llvm::makeSubprogramMap()
to build a mapping from functions to subprograms, and the IR linker needed to
fix up function references in a way that caused quadratic complexity in the IR
linking phase of LTO.
This change reverses the direction of the edge by storing the subprogram as
function-level metadata and removing DISubprogram's function field.
Since this is an IR change, a bitcode upgrade has been provided.
Fixes PR23367. An upgrade script for textual IR for out-of-tree clients is
attached to the PR.
Differential Revision: http://reviews.llvm.org/D14265
llvm-svn: 252219
As a follow-up to r246098, require `DISubprogram` definitions
(`isDefinition: true`) to be 'distinct'. Specifically, add an assembler
check, a verifier check, and bitcode upgrading logic to combat testcase
bitrot after the `DIBuilder` change.
While working on the testcases, I realized that
test/Linker/subprogram-linkonce-weak-odr.ll isn't relevant anymore. Its
purpose was to check for a corner case in PR22792 where two subprogram
definitions match exactly and share the same metadata node. The new
verifier check, requiring that subprogram definitions are 'distinct',
precludes that possibility.
I updated almost all the IR with the following script:
git grep -l -E -e '= !DISubprogram\(.* isDefinition: true' |
grep -v test/Bitcode |
xargs sed -i '' -e 's/= \(!DISubprogram(.*, isDefinition: true\)/= distinct \1/'
Likely some variant of would work for out-of-tree testcases.
llvm-svn: 246327