This is related to PR51392.
Before this patch, the timeline view was rounding doubles to the first decimal,
using a logic similar to this:
```
double AverageTime = (double)Input / CumulativeExecutions;
double Result = floor((AverageTime * 10) + 0.5) / 10
```
Here, Input and CumulativeExecutions are both unsigned integers.
The last operation is what effectively performs the rounding of AverageTime.
PR51392 has been raised because - under specific -m32 configurations of GCC -
one of the timeline tests reports slighlty different values (due to a different
rounding choice).
This patch tries to minimise the propagation of floating-point error by
hoisting the multiply by 10, so that it is performed on the unsigned.
```
double AverageTime = (double)(Input * 10) / CumulativeExecutions;
floor(AverageTime + 0.5) / 10
```
So we are trading a floating point multiply for a integer multiply (which can be
expanded using a simple MUL or using an `ADD + LEA` sequence). This decrease in
floating point operations executed should also help with decreasing the error in
the computation..
Strictly speaking, that computation will always be potentially subject to error
(depending on what values are passed in input). However, this patch should
improve the situation and make bug like PR51392 less frequent.
Change --max-timeline-cycles=0 to mean no limit on the number of cycles.
Use this in AMDGPU tests to show all instructions in the timeline view
instead of having it arbitrarily truncated.
Differential Revision: https://reviews.llvm.org/D104846
0 latency instructions now get processed and retired properly within the in-order pipeline. Had to fix a bug within TimelineView.cpp as well that would show up when a 0 latency instruction was the first instruction in the source.
Differential Revision: https://reviews.llvm.org/D104675
This is a follow-up for:
D98604 [MCA] Ensure that writes occur in-order
When instructions are aligned by the order of writes, they retire
in-order naturally. There is no need for an RCU, so it is disabled.
Differential Revision: https://reviews.llvm.org/D98628
including printing them.
Reviewers: andreadb, lebedev.ri
Differential Review: https://reviews.llvm.org/D86390
Introduces a new base class "InstructionView" that such views derive from.
Other views still use the "View" base class.
printInst prints a branch/call instruction as `b offset` (there are many
variants on various targets) instead of `b address`.
It is a convention to use address instead of offset in most external
symbolizers/disassemblers. This difference makes `llvm-objdump -d`
output unsatisfactory.
Add `uint64_t Address` to printInst(), so that it can pass the argument to
printInstruction(). `raw_ostream &OS` is moved to the last to be
consistent with other print* methods.
The next step is to pass `Address` to printInstruction() (generated by
tablegen from the instruction set description). We can gradually migrate
targets to print addresses instead of offsets.
In any case, downstream projects which don't know `Address` can pass 0 as
the argument.
Reviewed By: jhenderson
Differential Revision: https://reviews.llvm.org/D72172
Summary:
As disscused in https://bugs.llvm.org/show_bug.cgi?id=43219,
i believe it may be somewhat useful to show //some// aggregates
over all the sea of statistics provided.
Example:
```
Average Wait times (based on the timeline view):
[0]: Executions
[1]: Average time spent waiting in a scheduler's queue
[2]: Average time spent waiting in a scheduler's queue while ready
[3]: Average time elapsed from WB until retire stage
[0] [1] [2] [3]
0. 3 1.0 1.0 4.7 vmulps %xmm0, %xmm1, %xmm2
1. 3 2.7 0.0 2.3 vhaddps %xmm2, %xmm2, %xmm3
2. 3 6.0 0.0 0.0 vhaddps %xmm3, %xmm3, %xmm4
3 3.2 0.3 2.3 <total>
```
I.e. we average the averages.
Reviewers: andreadb, mattd, RKSimon
Reviewed By: andreadb
Subscribers: gbedwell, arphaman, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D68714
llvm-svn: 374361
1. raw_ostream supports ANSI colors so that you can write messages to
the termina with colors. Previously, in order to change and reset
color, you had to call `changeColor` and `resetColor` functions,
respectively.
So, if you print out "error: " in red, for example, you had to do
something like this:
OS.changeColor(raw_ostream::RED);
OS << "error: ";
OS.resetColor();
With this patch, you can write the same code as follows:
OS << raw_ostream::RED << "error: " << raw_ostream::RESET;
2. Add a boolean flag to raw_ostream so that you can disable colored
output. If you disable colors, changeColor, operator<<(Color),
resetColor and other color-related functions have no effect.
Most LLVM tools automatically prints out messages using colors, and
you can disable it by passing a flag such as `--disable-colors`.
This new flag makes it easy to write code that works that way.
Differential Revision: https://reviews.llvm.org/D65564
llvm-svn: 367649
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
Summary: This allows to remove `using namespace llvm;` in those *.cpp files
When we want to revisit the decision (everything resides in llvm::mca::*) in the future, we can move things to a nested namespace of llvm::mca::, to conceptually make them separate from the rest of llvm::mca::*
Reviewers: andreadb, mattd
Reviewed By: andreadb
Subscribers: javed.absar, tschuett, gbedwell, llvm-commits
Differential Revision: https://reviews.llvm.org/D53407
llvm-svn: 345612
Added begin()/end() methods to allow the usage of SourceMgr in foreach loops.
With this change, method getMCInstFromIndex() (as well as a couple of other
methods) are now redundant, and can be removed from the public interface.
llvm-svn: 345147
This patch introduces the following changes to the DispatchStatistics view:
* DispatchStatistics now reports the number of dispatched opcodes instead of
the number of dispatched instructions.
* The "Dynamic Dispatch Stall Cycles" table now also reports the percentage of
stall cycles against the total simulated cycles.
This change allows users to easily compare dispatch group sizes with the
processor DispatchWidth.
Before this change, it was difficult to correlate the two numbers, since
DispatchStatistics view reported numbers of instructions (instead of opcodes).
DispatchWidth defines the maximum size of a dispatch group in terms of number of
micro opcodes.
The other change introduced by this patch is related to how DispatchStage
generates "instruction dispatch" events.
In particular:
* There can be multiple dispatch events associated with a same instruction
* Each dispatch event now encapsulates the number of dispatched micro opcodes.
The number of micro opcodes declared by an instruction may exceed the processor
DispatchWidth. Therefore, we cannot assume that instructions are always fully
dispatched in a single cycle.
DispatchStage knows already how to handle instructions declaring a number of
opcodes bigger that DispatchWidth. However, DispatchStage always emitted a
single instruction dispatch event (during the first simulated dispatch cycle)
for instructions dispatched.
With this patch, DispatchStage now correctly notifies multiple dispatch events
for instructions that cannot be dispatched in a single cycle.
A few views had to be modified. Views can no longer assume that there can only
be one dispatch event per instruction.
Tests (and docs) have been updated.
Differential Revision: https://reviews.llvm.org/D51430
llvm-svn: 341055
This patch also uses colors to highlight problematic wait-time entries.
A problematic entry is an entry with an high wait time that tends to match (or
exceed) the size of the scheduler's buffer.
Color RED is used if an instruction had to wait an average number of cycles
which is bigger than (or equal to) the size of the underlying scheduler's
buffer.
Color YELLOW is used if the time (in cycles) spend waiting for the
operands or pipeline resources is bigger than half the size of the underlying
scheduler's buffer.
Color MAGENTA is used if an instruction does not consume buffer resources
according to the scheduling model.
llvm-svn: 340825