The code this patch removes was there to make sure the text sections went
before the dwarf sections. That is necessary because MachO uses offsets
relative to the start of the file, so adding a section can change relaxations.
The dwarf sections were being printed at the start just to produce symbols
pointing at the start of those sections.
The underlying issue was fixed in r231898. The dwarf sections are now printed
when they are about to be used, which is after we printed the text sections.
To make sure we don't regress, the patch makes the MachO streamer assert
if CodeGen puts anything unexpected after the DWARF sections.
llvm-svn: 232842
LocalStackSlotPass assumes that isFrameOffsetLegal doesn't change its
answer when the base register changes. Unfortunately this isn't true
in thumb1, where SP-based loads allow a larger offset than
non-SP-based loads, and this causes the base register reuse code to
generate instructions that are unencodable, causing an assertion
failure.
Solve this by adding a BaseReg parameter to isFrameOffsetLegal, which
ARMBaseRegisterInfo can then make use of to give the correct answer.
Differential Revision: http://reviews.llvm.org/D8419
llvm-svn: 232825
There are two main advantages to doing this
* Targets that only need to handle one of the formats specially don't have
to worry about the others. For example, x86 now only registers a
constructor for the COFF streamer.
* Changes to the arguments passed to one format constructor will not impact
the other formats.
llvm-svn: 232699
Memcpy, and other memory intrinsics, typically tries to use LDM/STM if
the source and target addresses are 4-byte aligned. In CodeGenPrepare
look for calls to memory intrinsics and, if the object is on the
stack, 4-byte align it if it's large enough that we expect that memcpy
would want to use LDM/STM to copy it.
Differential Revision: http://reviews.llvm.org/D7908
llvm-svn: 232627
The input offset to needsFrameBaseReg is a negative value below the top of the
stack frame, but when converting to a positive offset from the bottom of the
stack frame this value was negated, causing the final offset to be too large
by twice the input offset's magnitude. Fix that by not negating the offset.
Patch by John Brawn
Differential Revision: http://reviews.llvm.org/D8316
llvm-svn: 232513
ARMv6K is another layer between ARMV6 and ARMV6T2. This is the LLVM
side of the changes.
ARMV6 family LLVM implementation.
+-------------------------------------+
| ARMV6 |
+----------------+--------------------+
| ARMV6M (thumb) | ARMV6K (arm,thumb) | <- From ARMV6K and ARMV6M processors
+----------------+--------------------+ have support for hint instructions
| ARMV6T2 (arm,thumb,thumb2) | (SEV/WFE/WFI/NOP/YIELD). They can
+-------------------------------------+ be either real or default to NOP.
| ARMV7 (arm,thumb,thumb2) | The two processors also use
+-------------------------------------+ different encoding for them.
Patch by Vinicius Tinti.
llvm-svn: 232468
Summary:
This is instead of doing this in target independent code and is the last
non-functional change before targets begin to distinguish between
different memory constraints when selecting code for the ISD::INLINEASM
node.
Next, each target will individually move away from the idea that all
memory constraints behave like 'm'.
Subscribers: jholewinski, llvm-commits
Differential Revision: http://reviews.llvm.org/D8173
llvm-svn: 232373
The operand flag word for ISD::INLINEASM nodes now contains a 15-bit
memory constraint ID when the operand kind is Kind_Mem. This constraint
ID is a numeric equivalent to the constraint code string and is converted
with a target specific hook in TargetLowering.
This patch maps all memory constraints to InlineAsm::Constraint_m so there
is no functional change at this point. It just proves that using these
previously unused bits in the encoding of the flag word doesn't break
anything.
The next patch will make each target preserve the current mapping of
everything to Constraint_m for itself while changing the target independent
implementation of the hook to return Constraint_Unknown appropriately. Each
target will then be adapted in separate patches to use appropriate
Constraint_* values.
PR22883 was caused the matching operands copying the whole of the operand flags
for the matched operand. This included the constraint id which needed to be
replaced with the operand number. This has been fixed with a conversion
function. Following on from this, matching operands also used the operand
number as the constraint id. This has been fixed by looking up the matched
operand and taking it from there.
llvm-svn: 232165
This (r232027) has caused PR22883; so it seems those bits might be used by
something else after all. Reverting until we can figure out what else to do.
Original commit message:
The operand flag word for ISD::INLINEASM nodes now contains a 15-bit
memory constraint ID when the operand kind is Kind_Mem. This constraint
ID is a numeric equivalent to the constraint code string and is converted
with a target specific hook in TargetLowering.
This patch maps all memory constraints to InlineAsm::Constraint_m so there
is no functional change at this point. It just proves that using these
previously unused bits in the encoding of the flag word doesn't break anything.
The next patch will make each target preserve the current mapping of
everything to Constraint_m for itself while changing the target independent
implementation of the hook to return Constraint_Unknown appropriately. Each
target will then be adapted in separate patches to use appropriate Constraint_*
values.
llvm-svn: 232093
Summary:
The operand flag word for ISD::INLINEASM nodes now contains a 15-bit
memory constraint ID when the operand kind is Kind_Mem. This constraint
ID is a numeric equivalent to the constraint code string and is converted
with a target specific hook in TargetLowering.
This patch maps all memory constraints to InlineAsm::Constraint_m so there
is no functional change at this point. It just proves that using these
previously unused bits in the encoding of the flag word doesn't break anything.
The next patch will make each target preserve the current mapping of
everything to Constraint_m for itself while changing the target independent
implementation of the hook to return Constraint_Unknown appropriately. Each
target will then be adapted in separate patches to use appropriate Constraint_*
values.
Reviewers: hfinkel
Reviewed By: hfinkel
Subscribers: hfinkel, jholewinski, llvm-commits
Differential Revision: http://reviews.llvm.org/D8171
llvm-svn: 232027
Summary:
I don't know why every singled backend had to redeclare its own DataLayout.
There was a virtual getDataLayout() on the common base TargetMachine, the
default implementation returned nullptr. It was not clear from this that
we could assume at call site that a DataLayout will be available with
each Target.
Now getDataLayout() is no longer virtual and return a pointer to the
DataLayout member of the common base TargetMachine. I plan to turn it into
a reference in a future patch.
The only backend that didn't have a DataLayout previsouly was the CPPBackend.
It now initializes the default DataLayout. This commit is NFC for all the
other backends.
Test Plan: clang+llvm ninja check-all
Reviewers: echristo
Subscribers: jfb, jholewinski, llvm-commits
Differential Revision: http://reviews.llvm.org/D8243
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 231987
time. The target independent code was passing in one all the
time and targets weren't checking validity before using. Update
a few calls to pass in a MachineFunction where necessary.
llvm-svn: 231970
The main issue being fixed here is that APCS targets handling a "byval align N"
parameter with N > 4 were miscounting what objects were where on the stack,
leading to FrameLowering setting the frame pointer incorrectly and clobbering
the stack.
But byval handling had grown over many years, and had multiple layers of cruft
trying to compensate for each other and calculate padding correctly. This only
really needs to be done once, in the HandleByVal function. Elsewhere should
just do what it's told by that call.
I also stripped out unnecessary APCS/AAPCS distinctions (now that Clang emits
byvals with the correct C ABI alignment), which simplified HandleByVal.
rdar://20095672
llvm-svn: 231959
In theory this allows the compiler to skip materializing the array on
the stack. In practice clang often fails to do that, but that's a
different story. NFC.
llvm-svn: 231571
to disable lane switching if we don't actually have the instruction
set we want to switch to. Models the earlier check above the
conditional for the pass.
The testcase is one that triggered with the assert that's added
as part of the fix, use it to avoid adding a new testcase as it
highlights the same problem.
llvm-svn: 231539
This commit enables forming vector extloads for ARM.
It only does so for legal types, and when we can't fold the extension
in a wide/long form of the user instruction.
Enabling it for larger types isn't as good an idea on ARM as it is on
X86, because:
- we pretend that extloads are legal, but end up generating vld+vmov
- we have instructions like vld {dN, dM}, which can't be generated
when we "manually expand" extloads to vld+vmov.
For legal types, the combine doesn't fire that often: in the
integration tests only in a big endian testcase, where it removes a
pointless AND.
Related to rdar://19723053
Differential Revision: http://reviews.llvm.org/D7423
llvm-svn: 231396
Summary:
In PNaCl, most atomic instructions have their own @llvm.nacl.atomic.* function, each one, with a few exceptions, represents a consistent behaviour across all NaCl-supported targets. Unfortunately, the atomic RMW operations nand, [u]min, and [u]max aren't directly represented by any such @llvm.nacl.atomic.* function. This patch refines shouldExpandAtomicRMWInIR in TargetLowering so that a future `Le32TargetLowering` class can selectively inform the caller how the target desires the atomic RMW instruction to be expanded (ie via load-linked/store-conditional for ARM/AArch64, via cmpxchg for X86/others?, or not at all for Mips) if at all.
This does not represent a behavioural change and as such no tests were added.
Patch by: Richard Diamond.
Reviewers: jfb
Reviewed By: jfb
Subscribers: jfb, aemerson, t.p.northover, llvm-commits
Differential Revision: http://reviews.llvm.org/D7713
llvm-svn: 231250
a lookup, pass that in rather than use a naked call to getSubtargetImpl.
This involved passing down and around either a TargetMachine or
TargetRegisterInfo. Update all callers/definitions around the targets
and SelectionDAG.
llvm-svn: 230699
In case of "krait" CPU, asm printer doesn't emit any ".cpu" so the
features bits are not computed. This patch lets the asm printer
emit ".cpu cortex-a9" directive for krait and the hwdiv feature is
enabled through ".arch_extension". In short, krait is treated
as "cortex-a9" with hwdiv. We can not emit ".krait" as CPU since
it is not supported bu GNU GAS yet
llvm-svn: 230651
This patch is in response to r223147 where the avaiable features are
computed based on ".cpu" directive. This will work clean for the standard
variants like cortex-a9. For custom variants which rely on standard cpu names
for assembly, the additional features of a CPU should be propagated. This can be
done via ".arch_extension" as long as the assembler supports it. The
implementation for krait along with unit test will be submitted in next patch.
llvm-svn: 230650
This required plumbing a TargetRegisterInfo through computeRegisterProperties
and into findRepresentativeClass which uses it for register class
iteration. This required passing a subtarget into a few target specific
initializations of TargetLowering.
llvm-svn: 230583
Thumb-1 only allows SP-based LDR and STR to be word-sized, and SP-base LDR,
STR, and ADD only allow offsets that are a multiple of 4. Make some changes
to better make use of these instructions:
* Use word loads for anyext byte and halfword loads from the stack.
* Enforce 4-byte alignment on objects accessed in this way, to ensure that
the offset is valid.
* Do the same for objects whose frame index is used, in order to avoid having
to use more than one ADD to generate the frame index.
* Correct how many bits of offset we think AddrModeT1_s has.
Patch by John Brawn.
llvm-svn: 230496
The logic is almost there already, with our special homogeneous aggregate
handling. Tweaking it like this allows front-ends to emit AAPCS compliant code
without ever having to count registers or add discarded padding arguments.
Only arrays of i32 and i64 are needed to model AAPCS rules, but I decided to
apply the logic to all integer arrays for more consistency.
llvm-svn: 230348
This is a follow up to r230233 to fix something that I noticed by
inspection. The AddrModeT2_i8s4 addressing mode does not support
negative offsets. I spent a good chunk of the day trying to come up with
a testcase for this but was not successful. This addressing mode is used
to spill and restore GPRPair registers in Thumb2 code and that does not
happen often. We also make very limited used of negative offsets when
lowering frame indexes. I am going ahead with the change anyway, because
I am pretty confident that it is correct. I also added a missing assertion
to check that the low bits of the scaled offset are zero.
llvm-svn: 230297
It was previously using the subtarget to get values for the global
offset without actually checking each function as it was generating
code. Go ahead and solidify the current behavior and make the
existing FIXMEs more prominent.
As a note the ARM backend previously had a thumb1 and non-thumb1
set of defaults. Only the former was tested so I've changed the
behavior to only use that for now.
llvm-svn: 230245
The natural way to handle this addressing mode would be to say that it has
8 bits and gets scaled by 4, but since the MC layer is expecting the scaling
to be already reflected in the immediate value, we have been setting the
Scale to 1. That's fine, but then NumBits needs to be adjusted to reflect
the effective increase in the range of the immediate. That adjustment was
missing.
The consequence is that the register scavenger can fail.
The estimateRSStackSizeLimit() function in ARMFrameLowering.cpp correctly
assumes that the AddrModeT2_i8s4 address mode can handle scaled offsets up to
1020. Under just the right circumstances, we fail to reserve space for the
scavenger because it thinks that nothing will be needed. However, the overly
pessimistic behavior in rewriteT2FrameIndex causes some frame indexes to be
out of range and require scavenged registers, and so the scavenger asserts.
Unfortunately I have not been able to come up with a testcase for this. I
can only reproduce it on an internal branch where the frame layout and
register allocation is slightly different than trunk. We really need a
way to serialize MachineInstr-level IR to write reasonable tests for things
like this.
rdar://problem/19909005
llvm-svn: 230233
Everyone except R600 was manually passing the length of a static array
at each callsite, calculated in a variety of interesting ways. Far
easier to let ArrayRef handle that.
There should be no functional change, but out of tree targets may have
to tweak their calls as with these examples.
llvm-svn: 230118
This re-applies r223862, r224198, r224203, and r224754, which were
reverted in r228129 because they exposed Clang misalignment problems
when self-hosting.
The combine caused the crashes because we turned ISD::LOAD/STORE nodes
to ARMISD::VLD1/VST1_UPD nodes. When selecting addressing modes, we
were very lax for the former, and only emitted the alignment operand
(as in "[r1:128]") when it was larger than the standard alignment of
the memory type.
However, for ARMISD nodes, we just used the MMO alignment, no matter
what. In our case, we turned ISD nodes to ARMISD nodes, and this
caused the alignment operands to start being emitted.
And that's how we exposed alignment problems that were ignored before
(but I believe would have been caught with SCTRL.A==1?).
To fix this, we can just mirror the hack done for ISD nodes: only
take into account the MMO alignment when the access is overaligned.
Original commit message:
We used to only combine intrinsics, and turn them into VLD1_UPD/VST1_UPD
when the base pointer is incremented after the load/store.
We can do the same thing for generic load/stores.
Note that we can only combine the first load/store+adds pair in
a sequence (as might be generated for a v16f32 load for instance),
because other combines turn the base pointer addition chain (each
computing the address of the next load, from the address of the last
load) into independent additions (common base pointer + this load's
offset).
rdar://19717869, rdar://14062261.
llvm-svn: 229932
In preparation for a future patch:
- rename isLoad to isLoadOp: the former is confusing, and can be taken
to refer to the fact that the node is an ISD::LOAD. (it isn't, yet.)
- change formatting here and there.
- add some comments.
- const-ify bools.
llvm-svn: 229929
Previously, subtarget features were a bitfield with the underlying type being uint64_t.
Since several targets (X86 and ARM, in particular) have hit or were very close to hitting this bound, switching the features to use a bitset.
No functional change.
Differential Revision: http://reviews.llvm.org/D7065
llvm-svn: 229831
A null MCTargetStreamer allows IRObjectFile to ignore target-specific
directives. Previously we were crashing.
Differential Revision: http://reviews.llvm.org/D7711
llvm-svn: 229797
Add some of the missing M and R class Cortex CPUs, namely:
Cortex-M0+ (called Cortex-M0plus for GCC compatibility)
Cortex-M1
SC000
SC300
Cortex-R5
llvm-svn: 229660
initialization. Initialize the subtarget once per function and
migrate Emit{Start|End}OfAsmFile to either use attributes on the
TargetMachine or get information from the subtarget we'd use
for assembling. One bit (getISAEncoding) touched the general
AsmPrinter and the debug output. Handle this one by passing
the function for the subprogram down and updating all callers
and users.
The top-level-ness of the ARM attribute output for assembly is,
by nature, contrary to how we'd want to do this for an LTO
situation where we have multiple cpu architectures so this
solution is good enough for now.
llvm-svn: 229528
This adds a safe interface to the machine independent InputArg struct
for accessing the index of the original (IR-level) argument. When a
non-native return type is lowered, we generate the hidden
machine-level sret argument on-the-fly. Before this fix, we were
representing this argument as OrigArgIndex == 0, which is an outright
lie. In particular this crashed in the AArch64 backend where we
actually try to access the type of the original argument.
Now we use a sentinel value for machine arguments that have no
original argument index. AArch64, ARM, Mips, and PPC now check for this
case before accessing the original argument.
Fixes <rdar://19792160> Null pointer assertion in AArch64TargetLowering
llvm-svn: 229413
Canonicalize access to function attributes to use the simpler API.
getAttributes().getAttribute(AttributeSet::FunctionIndex, Kind)
=> getFnAttribute(Kind)
getAttributes().hasAttribute(AttributeSet::FunctionIndex, Kind)
=> hasFnAttribute(Kind)
llvm-svn: 229220
LLVM's include tree and the use of using declarations to hide the
'legacy' namespace for the old pass manager.
This undoes the primary modules-hostile change I made to keep
out-of-tree targets building. I sent an email inquiring about whether
this would be reasonable to do at this phase and people seemed fine with
it, so making it a reality. This should allow us to start bootstrapping
with modules to a certain extent along with making it easier to mix and
match headers in general.
The updates to any code for users of LLVM are very mechanical. Switch
from including "llvm/PassManager.h" to "llvm/IR/LegacyPassManager.h".
Qualify the types which now produce compile errors with "legacy::". The
most common ones are "PassManager", "PassManagerBase", and
"FunctionPassManager".
llvm-svn: 229094
The changes in r223113 (ARM modified-immediate syntax) have broken
instructions like:
mov r0, #~0xffffff00
The problem is that I've added a spurious range check on the immediate
operand to ensure that it lies between INT32_MIN and UINT32_MAX. While
this range check is correct in theory, it causes problems because the
operand is stored in an int64_t (by MC). So valid 32-bit constants like
\#~0xffffff00 become out of range. The solution is to simply remove this
range check. It is not possible to validate the range of the immediate
operand with the current setup because: 1) The operand is stored in an
int64_t by MC, 2) The immediate can be of the forms #imm, #-imm, #~imm
or even #((~imm)) etc. So we just chop the value to 32 bits and use it.
Also noted that the original range check was note tested by any of the
unit tests. I've added a new test to cover #~imm kind of operands.
Change-Id: I411e90d84312a2eff01b732bb238af536c4a7599
llvm-svn: 228920
While various DAG combines try to guarantee that a vector SETCC
operation will have the same output size as input, there's nothing
intrinsic to either creation or LegalizeTypes that actually guarantees
it, so the function needs to be ready to handle a mismatch.
Fortunately this is easy enough, just extend or truncate the naturally
compared result.
I couldn't reproduce the failure in other backends that I know have
SIMD, so it's probably only an issue for these two due to shared
heritage.
Should fix PR21645.
llvm-svn: 228518
Summary: When evaluating floating point instructions in the inliner, ask the TTI whether it is an expensive operation. By default, it's not an expensive operation. This keeps the default behavior the same as before. The ARM TTI has been updated to return back TCC_Expensive for targets which don't have hardware floating point.
Reviewers: chandlerc, echristo
Reviewed By: echristo
Subscribers: t.p.northover, aemerson, llvm-commits
Differential Revision: http://reviews.llvm.org/D6936
llvm-svn: 228263
This is a bug that was caused due to storing the feature bitset in a 32-bit
variable when it is a 64-bit mask, discarding the top half of the feature set.
llvm-svn: 228151
Currently, Cortex-A72 is modelled as an Cortex-A57 except the fp
load balancing pass isn't enabled for Cortex-A72 as it's not
profitable to have it enabled for this core.
Patch by Ranjeet Singh.
llvm-svn: 228140
This reverts patches 223862, 224198, 224203, and 224754, which were all
related to the vector load/store combining and were reverted/reaplied
a few times due to the same alignment problems we're seeing now.
Further tests, mainly self-hosting Clang, will be needed to reapply this
patch in the future.
llvm-svn: 228129
The ARM assembler allows register alias redefinitions as long as it
targets the same register. r222319 broke that. In the AArch64 case
it would just produce a new warning, but in the ARM case it would
error out on previously accepted assembler.
llvm-svn: 228109
Summary:
Previously it only avoided optimizing signed comparisons to 0.
Sometimes the DAGCombiner will optimize the unsigned comparisons
to 0 before it gets to the peephole pass, but sometimes it doesn't.
Fix for PR22373.
Test Plan: test/CodeGen/ARM/sub-cmp-peephole.ll
Reviewers: jfb, manmanren
Subscribers: aemerson, llvm-commits
Differential Revision: http://reviews.llvm.org/D7274
llvm-svn: 227809
now that we have a correct and cached subtarget specific to the
function.
Also, finish providing a cached per-function subtarget in the core
LLVMTargetMachine -- that layer hadn't switched over yet.
The only use of the TargetMachine was to re-lookup a subtarget for
a particular function to work around the fact that TTI was immutable.
Now that it is per-function and we haved a cached subtarget, use it.
This still leaves a few interfaces with real warts on them where we were
passing Function objects through the TTI interface. I'll remove these
and clean their usage up in subsequent commits now that this isn't
necessary.
llvm-svn: 227738
intermediate TTI implementation template and instead query up to the
derived class for both the TargetMachine and the TargetLowering.
Most of the derived types had a TLI cached already and there is no need
to store a less precisely typed target machine pointer.
This will in turn make it much cleaner to look up the TLI via
a per-function subtarget instead of the generic subtarget, and it will
pave the way toward pulling the subtarget used for unroll preferences
into the same form once we are *always* using the function to look up
the correct subtarget.
llvm-svn: 227737
TargetIRAnalysis access path directly rather than implementing getTTI.
This even removes getTTI from the interface. It's more efficient for
each target to just register a precise callback that creates their
specific TTI.
As part of this, all of the targets which are building their subtargets
individually per-function now build their TTI instance with the function
and thus look up the correct subtarget and cache it. NVPTX, R600, and
XCore currently don't leverage this functionality, but its trivial for
them to add it now.
llvm-svn: 227735
null.
For some reason some of the original TTI code supported a null target
machine. This seems to have been legacy, and I made matters worse when
refactoring this code by spreading that pattern further through the
various targets.
The TargetMachine can't actually be null, and it doesn't make sense to
support that use case. I've now consistently removed it and removed all
of the code trying to cope with that situation. This is probably good,
as several targets *didn't* cope with it being null despite the null
default argument in their constructors. =]
llvm-svn: 227734
base which it adds a single analysis pass to, to instead return the type
erased TargetTransformInfo object constructed for that TargetMachine.
This removes all of the pass variants for TTI. There is now a single TTI
*pass* in the Analysis layer. All of the Analysis <-> Target
communication is through the TTI's type erased interface itself. While
the diff is large here, it is nothing more that code motion to make
types available in a header file for use in a different source file
within each target.
I've tried to keep all the doxygen comments and file boilerplate in line
with this move, but let me know if I missed anything.
With this in place, the next step to making TTI work with the new pass
manager is to introduce a really simple new-style analysis that produces
a TTI object via a callback into this routine on the target machine.
Once we have that, we'll have the building blocks necessary to accept
a function argument as well.
llvm-svn: 227685
This adds some comments and splits the flag calculation on type boundaries to
make the table more readable. Addresses some post-commit review comments to SVN
r227603. NFC.
llvm-svn: 227670
type erased interface and a single analysis pass rather than an
extremely complex analysis group.
The end result is that the TTI analysis can contain a type erased
implementation that supports the polymorphic TTI interface. We can build
one from a target-specific implementation or from a dummy one in the IR.
I've also factored all of the code into "mix-in"-able base classes,
including CRTP base classes to facilitate calling back up to the most
specialized form when delegating horizontally across the surface. These
aren't as clean as I would like and I'm planning to work on cleaning
some of this up, but I wanted to start by putting into the right form.
There are a number of reasons for this change, and this particular
design. The first and foremost reason is that an analysis group is
complete overkill, and the chaining delegation strategy was so opaque,
confusing, and high overhead that TTI was suffering greatly for it.
Several of the TTI functions had failed to be implemented in all places
because of the chaining-based delegation making there be no checking of
this. A few other functions were implemented with incorrect delegation.
The message to me was very clear working on this -- the delegation and
analysis group structure was too confusing to be useful here.
The other reason of course is that this is *much* more natural fit for
the new pass manager. This will lay the ground work for a type-erased
per-function info object that can look up the correct subtarget and even
cache it.
Yet another benefit is that this will significantly simplify the
interaction of the pass managers and the TargetMachine. See the future
work below.
The downside of this change is that it is very, very verbose. I'm going
to work to improve that, but it is somewhat an implementation necessity
in C++ to do type erasure. =/ I discussed this design really extensively
with Eric and Hal prior to going down this path, and afterward showed
them the result. No one was really thrilled with it, but there doesn't
seem to be a substantially better alternative. Using a base class and
virtual method dispatch would make the code much shorter, but as
discussed in the update to the programmer's manual and elsewhere,
a polymorphic interface feels like the more principled approach even if
this is perhaps the least compelling example of it. ;]
Ultimately, there is still a lot more to be done here, but this was the
huge chunk that I couldn't really split things out of because this was
the interface change to TTI. I've tried to minimize all the other parts
of this. The follow up work should include at least:
1) Improving the TargetMachine interface by having it directly return
a TTI object. Because we have a non-pass object with value semantics
and an internal type erasure mechanism, we can narrow the interface
of the TargetMachine to *just* do what we need: build and return
a TTI object that we can then insert into the pass pipeline.
2) Make the TTI object be fully specialized for a particular function.
This will include splitting off a minimal form of it which is
sufficient for the inliner and the old pass manager.
3) Add a new pass manager analysis which produces TTI objects from the
target machine for each function. This may actually be done as part
of #2 in order to use the new analysis to implement #2.
4) Work on narrowing the API between TTI and the targets so that it is
easier to understand and less verbose to type erase.
5) Work on narrowing the API between TTI and its clients so that it is
easier to understand and less verbose to forward.
6) Try to improve the CRTP-based delegation. I feel like this code is
just a bit messy and exacerbating the complexity of implementing
the TTI in each target.
Many thanks to Eric and Hal for their help here. I ended up blocked on
this somewhat more abruptly than I expected, and so I appreciate getting
it sorted out very quickly.
Differential Revision: http://reviews.llvm.org/D7293
llvm-svn: 227669
Now that -mstack-probe-size is piped through to the backend via the function
attribute as on Windows x86, honour the value to permit handling of non-default
values for stack probes. This is needed /Gs with the clang-cl driver or
-mstack-probe-size with the clang driver when targeting Windows on ARM.
llvm-svn: 227667
Also revert r227489 since it didn't actually fix the thing I thought I
was fixing (since the test case was targeting the wrong architecture
initially). The change might be correct & demonstrated by other test
cases, but it's not a priority for me to find those test cases right
now.
Filed PR22417 for the failure.
llvm-svn: 227632
If the original FPU specification involved a restricted VFP unit (d16), ensure
that we reset the functionality when we encounter a new FPU type. In
particular, if the user specified vfpv3-d16, but switched to a VFPv3 (which has
32 double precision registers), we would fail to reset the D16 feature, and
treat it as being equivalent to vfpv3-d16.
llvm-svn: 227603
The FPU directive permits the user to switch the target FPU, enabling
instructions that would be otherwise unavailable. However, when configuring the
new subtarget features, we would not enable the implied functions for newer
FPUs. This would result in invalid rejection of valid input. Ensure that we
inherit the implied FPU functionality when enabling newer versions of the FPU.
Fortunately, these are mostly hierarchical, unlike the CPUs.
Addresses PR22395.
llvm-svn: 227584
Any code creating an MCSectionELF knows ELF and already provides the flags.
SectionKind is an abstraction used by common code that uses a plain
MCSection.
Use the flags to compute the SectionKind. This removes a lot of
guessing and boilerplate from the MCSectionELF construction.
llvm-svn: 227476
derived classes.
Since global data alignment, layout, and mangling is often based on the
DataLayout, move it to the TargetMachine. This ensures that global
data is going to be layed out and mangled consistently if the subtarget
changes on a per function basis. Prior to this all targets(*) have
had subtarget dependent code moved out and onto the TargetMachine.
*One target hasn't been migrated as part of this change: R600. The
R600 port has, as a subtarget feature, the size of pointers and
this affects global data layout. I've currently hacked in a FIXME
to enable progress, but the port needs to be updated to either pass
the 64-bitness to the TargetMachine, or fix the DataLayout to
avoid subtarget dependent features.
llvm-svn: 227113