Properly perform destruction and lifetime extension of such temporaries.
C++ object-type return values of conservatively evaluated functions are now
represented as compound values of well-defined temporary object regions. The
function creates a region that represents the temporary object and will later
be used for destruction or materialization, invalidates it, and returns the
invalidated compound value of the object.
Differential Revision: https://reviews.llvm.org/D44131
llvm-svn: 327348
This patch uses the newly added CFGCXXRecordTypedCall element at the call site
of the caller to construct the return value within the callee directly into the
caller's stack frame. This way it is also capable of populating the temporary
destructor and lifetime extension maps for the temporary, which allows
temporary destructors and lifetime extension to work correctly.
This patch does not affect temporaries that were returned from conservatively
evaluated functions.
Differential Revision: https://reviews.llvm.org/D44124
llvm-svn: 327345
Context can do what Tagged was intended to support (snapshot filesystems),
and less intrusively.
getTaggedFileSystem() no longer needs a filename.
Cleanups while here:
- code-complete now returns errors as Expected, like other functions
- added an alias Callback<T> for the usual callback function type
llvm-svn: 327344
This patch adds a new CFGStmt sub-class, CFGCXXRecordTypedCall, which replaces
the regular CFGStmt for the respective CallExpr whenever the CFG has additional
information to provide regarding the lifetime of the returned value.
This additional call site information is represented by a ConstructionContext
(which was previously used for CFGConstructor elements) that provides references
to CXXBindTemporaryExpr and MaterializeTemporaryExpr that surround the call.
This corresponds to the common C++ calling convention solution of providing
the target address for constructing the return value as an auxiliary implicit
argument during function call.
One of the use cases for such extra context at the call site would be to perform
any sort of inter-procedural analysis over the CFG that involves functions
returning objects by value. In this case the elidable constructor at the return
site would construct the object explained by the context at the call site, and
its lifetime would also be managed by the caller, not the callee.
The extra context would also be useful for properly handling the return-value
temporary at the call site, even if the callee is not being analyzed
inter-procedurally.
Differential Revision: https://reviews.llvm.org/D44120
llvm-svn: 327343
This diff extends the output of -elf-section-groups
(llvm style, gnu style is unchanged since it's meant to be
compatible with binutils readelf) with sh_link and sh_info.
This change will enable us to use llvm-readobj -elf-section-groups
for testing llvm-objcopy's support for .group sections.
Test plan: make check-all
Differential revision: https://reviews.llvm.org/D44280
llvm-svn: 327341
Summary:
Add more standard compliant posix_memalign implementation for LSan and
use corresponding sanitizer's posix_memalign implenetations in allocation
wrappers on Mac.
Reviewers: eugenis, fjricci
Subscribers: kubamracek, delcypher, #sanitizers, llvm-commits
Differential Revision: https://reviews.llvm.org/D44335
llvm-svn: 327338
In the case that the CallInst that is being moved has an associated
operand bundle which is a funclet, the move will construct an invalid
instruction. The new site will have a different token and needs to be
reassociated with the new instruction.
Unfortunately, there is no way to alter the bundle after the
construction of the instruction. Replace the call instruction cloning
with a custom helper to clone the instruction and reassociate the
funclet token.
llvm-svn: 327336
This relands r326965.
There was a null dereference in typo correction that was triggered in
Sema/diagnose_if.c. We are not always in a function scope when doing
typo correction. The fix is to add a null check.
LLVM's optimizer made it hard to find this bug. I wrote it up in a
not-very-well-editted blog post here:
http://qinsb.blogspot.com/2018/03/ub-will-delete-your-null-checks.html
llvm-svn: 327334
This is a more principled approach to disabling Spotlight .dSYM
lookups while running the testsuite, most importantly it also works
for the LIT-based tests, which I overlooked in my initial fix
(renaming the test build dir to lldb-tests.noindex).
Differential Revision: https://reviews.llvm.org/D44342
llvm-svn: 327330
LoopInstSimplify is unused and untested. Reading through the commit
history the pass also seems to have a high maintenance burden.
It would be best to retire the pass for now. It should be easy to
recover if we need something similar in the future.
Differential Revision: https://reviews.llvm.org/D44053
llvm-svn: 327329
Summary:
ProvenanceAnalysis::related(A, B) currently memoizes its results, and on big
tests the cache grows too large, and we're spending most of the time
growing/looking through DenseMap.
This patch reduces the size of the cache by normalizing keys first: we do that
by calling GetUnderlyingObjCPtr on the input values. The results of
GetUnderlyingObjCPtr are also memoized in a separate cache.
The patch doesn't bring noticable changes to compile time on CTMark, however
significantly helps one of our internal tests.
Reviewers: gottesmm
Subscribers: hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D44270
llvm-svn: 327328
This reverts commit r327318. It breaks the Xcode and CMake Darwin
builders:
clang: error: no such file or directory:
'.../source/Plugins/Architecture/PPC64/ArchitecturePPC64.cpp'
clang: error: no input files
More details are in https://reviews.llvm.org/D42582.
llvm-svn: 327327
Verify that the location where a relocation is about the be
applied contains the expected existing value.
This is essentially a sanity check to catch bugs in the compiler
and the linker.
Differential Revision: https://reviews.llvm.org/D44349
llvm-svn: 327325
This ensures that diagnostics are not remapped to incorrect preamble locations after
the second reparse with a remapped header file occurs.
rdar://37502480
llvm-svn: 327322
Summary:
The need for this change stems from the fact that Windows doesn't support
partial unmapping (`MEM_RELEASE` implies the entire allocated region). So we
now have to keep track of the reserved region and the committed region, so that
we can function without the trimming we did when dealing with larger alignments.
Instead of just having a `ReservedAddressRange` per chunk, we introduce a
`LargeChunkHeader` (and `LargeChunk` namespace) that additionally holds the
committed size and the usable size. The former is needed for stats purposes,
the latter is used by the frontend. Requiring both is debatable, we could only
work with the usable size but then be off by up to a page per chunk when
dealing with stats.
Additionally, we introduce more stats since they turned out to be useful for
experiments, and a `PrintStats` function that will be used by the combined
allocator in later patch.
Reviewers: alekseyshl, flowerhack
Reviewed By: alekseyshl
Subscribers: delcypher, #sanitizers, llvm-commits
Differential Revision: https://reviews.llvm.org/D43949
llvm-svn: 327321
Clean up the parsing of notes in llvm-readobj, improve bounds checking, and
allow the parsing code to be reused.
Differential Revision: https://reviews.llvm.org/D43958
llvm-svn: 327320
getNumUses is a linear time operation. It traverses the user linked list to the end and counts as it goes. Since we are only interested in small constant counts, we should use hasNUses or hasNUsesMore more that terminate the traversal as soon as it can provide the answer.
There are still two other locations in InstCombine, but changing those would force a rebase of D44266 which if accepted would remove them.
Differential Revision: https://reviews.llvm.org/D44398
llvm-svn: 327315
getNumUses is a linear operation. It walks a linked list to get a count. So in this case its better to just ask if there are any users rather than how many.
llvm-svn: 327314
This is the FP equivalent of D42818. Use it for the few cases in InstSimplify
with -0.0 folds (that's the only current use of m_NegZero()).
Differential Revision: https://reviews.llvm.org/D43792
llvm-svn: 327307
After two failed attempts last week to make this work I am
going back to a known good method of making this test pass on
macOS...adding the current apple-clang version to the
UNSUPPORTED list.
During a previous patch review (https://reviews.llvm.org/D44103)
it was suggested to just XFAIL libcpp-no-deduction-guides
as was done to iter_alloc_deduction.pass.cpp. However
this caused a an unexpected pass on:
http://lab.llvm.org:8011/builders/libcxx-libcxxabi-x86_64-linux-ubuntu-gcc-tot-latest-std/builds/214
I then attempted to just mark libcpp-no-deduction-guides
as UNSUPPORTED, however this caused an additional bot
failure. So I reverted everything (https://reviews.llvm.org/rCXX327191).
To solve this and get work unblocked I am adding
apple-clang-9 to the original UNSUPPORTED list.
llvm-svn: 327304
Summary:
1) Make sure to discard dangling debug info if the variable (or
variable fragment) is mapped to something new before we had a
chance to resolve the dangling debug info.
2) When resolving debug info, make sure to bump the associated
SDNodeOrder to ensure that the DBG_VALUE is emitted after the
instruction that defines the value used in the DBG_VALUE.
This will avoid a debug-use before def scenario as seen in
https://bugs.llvm.org/show_bug.cgi?id=36417.
The new test case, test/DebugInfo/X86/sdag-dangling-dbgvalue.ll,
show some other limitations in how dangling debug info is
handled in the SelectionDAG. Since we currently only support
having one dangling dbg.value per Value, we will end up dropping
debug info when there are more than one variable that is described
by the same "dangling value".
Reviewers: aprantl
Reviewed By: aprantl
Subscribers: aprantl, eraman, llvm-commits, JDevlieghere
Tags: #debug-info
Differential Revision: https://reviews.llvm.org/D44369
llvm-svn: 327303
This adds two features: "packets", and "nvj".
Enabling "packets" allows the compiler to generate instruction packets,
while disabling it will prevent it and disable all optimizations that
generate them. This feature is enabled by default on all subtargets.
The feature "nvj" allows the compiler to generate new-value jumps and it
implies "packets". It is enabled on all subtargets.
The exception is made for packets with endloop instructions, since they
require a certain minimum number of instructions in the packets to which
they apply. Disabling "packets" will not prevent hardware loops from
being generated.
llvm-svn: 327302
Summary:
This pattern came up in PR36682:
https://bugs.llvm.org/show_bug.cgi?id=36682https://godbolt.org/g/LhuD9A
Tests for proposed fix in D44367.
Looking at the IR pattern in question, as per [[ https://github.com/rutgers-apl/alive-nj | alive-nj ]], for all the type combinations i checked
(input: `i16`, `i32`, `i64`; intermediate: `half`/`i16`, `float`/`i32`, `double`/`i64`)
for the following `icmp` comparisons the `sitofp`+`bitcast` can be dropped:
* `eq 0`
* `ne 0`
* `slt 0`
* `sle 0`
* `sge 0`
* `sgt 0`
* `slt 1`
* `sge 1`
* `sle -1`
* `sgt -1`
I did not check vectors, but i'm guessing it's the same there.
{F5887419}
Thus all these cases are in the testcase (along with the vector variant with additional `undef` element in the middle).
There are no negative patterns here (unless alive-nj lied/is broken), all of these should be optimized.
Generated with {F5887551}
Reviewers: spatel, majnemer, efriedma, arsenm
Reviewed By: spatel
Subscribers: nlopes, wdng, llvm-commits
Differential Revision: https://reviews.llvm.org/D44390
llvm-svn: 327301