`hip-openmp-compatible` flag treats hip and hipv4 offload kinds
as compatible with openmp offload kind while extracting code objects
from a heterogenous archive library. Vice versa is also considered
compatible if hip code was compiled with -fgpu-rdc.
This flag only relaxes compatibility criteria on `OffloadKind`,
rest of the components like `Triple` and `GPUArhc` still needs to
be compatible.
Reviewed By: yaxunl
Differential Revision: https://reviews.llvm.org/D120697
Summary;
This path adds printing support for the linker wrapper. When the user
passes `-v` it will not print the commands used by the linker wrapper to
indicate to the user what is happening during the linking.
The TokenStream class is the representation of the source code that will
be fed into the GLR parser.
This patch allows a "raw" TokenStream to be built by reading source code.
It also supports scanning a TokenStream to find the directive structure.
Next steps (with placeholders in the code): heuristically choosing a
path through #ifs, preprocessing the code by stripping directives and comments.
These will produce a suitable stream to feed into the parser proper.
Differential Revision: https://reviews.llvm.org/D119162
In an indirect buffer, buffer-file-name is nil, so check the base buffer
instead. This works fine in direct buffers where buffer-base-buffer returns
nil.
Reviewed By: sammccall
Differential Revision: https://reviews.llvm.org/D120408
The dependency scanner already generates canonical -cc1 command lines that can be used to compile discovered modular dependencies.
For translation unit command lines, the scanner only generates additional driver arguments the build system is expected to append to the original command line.
While this works most of the time, there are situations where that's not the case. For example with `-Wunused-command-line-argument`, Clang will complain about the `-fmodules-cache-path=` argument that's not being used in explicit modular builds. Combine that with `-Werror` and the build outright fails.
To prevent such failures, this patch changes the dependency scanner to return the full driver command line to compile the original translation unit. This gives us more opportunities to massage the arguments into something reasonable.
Reviewed By: Bigcheese
Differential Revision: https://reviews.llvm.org/D118986
This patch introduces a dense implementation of the LR parsing table, which is
used by LR parsers.
We build a SLR(1) parsing table from the LR(0) graph.
Statistics of the LR parsing table on the C++ spec grammar:
- number of states: 1449
- number of actions: 83069
- size of the table (bytes): 334928
Differential Revision: https://reviews.llvm.org/D118196
Summary:
This patch removes the error we recieve when attempting to extract
offloading sections. We shouldn't consider this a failure because
extracting bitcode isn't necessarily required.
Summary:
We were not previously saving strings when saving symbol names during
LTO symbol resolution. This caused a crash inside the dense set when
some of the strings would rarely be moved internally by the object file
class.
This patch adds support for linking CPU offloading applications in the
linker wrapper. We generate the necessary linking job using the host
linker's path and library arguments. This may not be true for more
complex offloading schemes, but this is sufficient for now.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D119613
Ensure CLANG_PLUGIN_SUPPORT is compatible with llvm_add_library.
Fixes an issue noted in D111100.
Differential Revision: https://reviews.llvm.org/D119199
This will allow moving the IncludeCleaner library essentials to Clang
and decoupling them from the majority of clangd.
The patch itself just moves the code, it doesn't change existing
functionality.
Reviewed By: sammccall
Differential Revision: https://reviews.llvm.org/D119130
Summary:
This patch changes the ClangLinkerWrapper to use the executable path
when searching for the lld binary. Previously we relied on the program
name. Also not finding 'llvm-strip' is not considered an error anymore
because it is an optional optimization.
Add the build directory to the search path for llvm-strip instead
of solely relying on the PATH environment variable setting.
Reviewed By: jhuber6
Differential Revision: https://reviews.llvm.org/D118965
This header is very large (3M Lines once expended) and was included in location
where dwarf-specific information were not needed.
More specifically, this commit suppresses the dependencies on
llvm/BinaryFormat/Dwarf.h in two headers: llvm/IR/IRBuilder.h and
llvm/IR/DebugInfoMetadata.h. As these headers (esp. the former) are widely used,
this has a decent impact on number of preprocessed lines generated during
compilation of LLVM, as showcased below.
This is achieved by moving some definitions back to the .cpp file, no
performance impact implied[0].
As a consequence of that patch, downstream user may need to manually some extra
files:
llvm/IR/IRBuilder.h no longer includes llvm/BinaryFormat/Dwarf.h
llvm/IR/DebugInfoMetadata.h no longer includes llvm/BinaryFormat/Dwarf.h
In some situations, codes maybe relying on the fact that
llvm/BinaryFormat/Dwarf.h was including llvm/ADT/Triple.h, this hidden
dependency now needs to be explicit.
$ clang++ -E -Iinclude -I../llvm/include ../llvm/lib/Transforms/Scalar/*.cpp -std=c++14 -fno-rtti -fno-exceptions | wc -l
after: 10978519
before: 11245451
Related Discourse thread: https://llvm.discourse.group/t/include-what-you-use-include-cleanup
[0] https://llvm-compile-time-tracker.com/compare.php?from=fa7145dfbf94cb93b1c3e610582c495cb806569b&to=995d3e326ee1d9489145e20762c65465a9caeab4&stat=instructions
Differential Revision: https://reviews.llvm.org/D118781
The linker wrapper tool uses the 'nvlink' and 'ptxas' binaries to link
and assemble device files. Previously we searched for this using the
binaries in the user's path. This didn't work in cases where the user
passed in a specific Cuda path to Clang. This patch changes the linker
wrapper to accept an argument for the Cuda path we can get from Clang.
This should fix#53573.
Reviewed By: tianshilei1992
Differential Revision: https://reviews.llvm.org/D118944
We experienced some deadlocks when we used multiple threads for logging
using `scan-builds` intercept-build tool when we used multiple threads by
e.g. logging `make -j16`
```
(gdb) bt
#0 0x00007f2bb3aff110 in __lll_lock_wait () from /lib/x86_64-linux-gnu/libpthread.so.0
#1 0x00007f2bb3af70a3 in pthread_mutex_lock () from /lib/x86_64-linux-gnu/libpthread.so.0
#2 0x00007f2bb3d152e4 in ?? ()
#3 0x00007ffcc5f0cc80 in ?? ()
#4 0x00007f2bb3d2bf5b in ?? () from /lib64/ld-linux-x86-64.so.2
#5 0x00007f2bb3b5da27 in ?? () from /lib/x86_64-linux-gnu/libc.so.6
#6 0x00007f2bb3b5dbe0 in exit () from /lib/x86_64-linux-gnu/libc.so.6
#7 0x00007f2bb3d144ee in ?? ()
#8 0x746e692f706d742f in ?? ()
#9 0x692d747065637265 in ?? ()
#10 0x2f653631326b3034 in ?? ()
#11 0x646d632e35353532 in ?? ()
#12 0x0000000000000000 in ?? ()
```
I think the gcc's exit call caused the injected `libear.so` to be unloaded
by the `ld`, which in turn called the `void on_unload() __attribute__((destructor))`.
That tried to acquire an already locked mutex which was left locked in the
`bear_report_call()` call, that probably encountered some error and
returned early when it forgot to unlock the mutex.
All of these are speculation since from the backtrace I could not verify
if frames 2 and 3 are in fact corresponding to the `libear.so` module.
But I think it's a fairly safe bet.
So, hereby I'm releasing the held mutex on *all paths*, even if some failure
happens.
PS: I would use lock_guards, but it's C.
Reviewed-by: NoQ
Differential Revision: https://reviews.llvm.org/D118439
Summary:
This patch removes the system call to the `clang-offload-wrapper` tool
by replicating its functionality in a new file. This improves
performance and makes the future wrapping functionality easier to
change.
Differential Revision: https://reviews.llvm.org/D118198
Summary:
This patch replaces the system call to the `llc` binary with a library
call to the target machine interface. This should be faster than
relying on an external system call to compile the final wrapper binary.
Differential Revision: https://reviews.llvm.org/D118197
Summary:
This parses the executable name out of the linker arguments so we can
use it to give more informative temporary file names and so we don't
accidentally use it for device linking.
Summary:
This patch implements the `-save-temps` flag for the linker wrapper.
This allows the user to inspect the intermeditary outpout that the
linker wrapper creates.
Summary:
Various changes to the linker wrapper, and the bitcode embedding is not
done after the optimizations have run rather than after linking is done.
This saves time when doing JIT.
This patch improves the symbol resolution done for LTO with offloading
applications. The symbol resolution done here allows the LTO backend to
internalize more functions. The symbol resoltion done is a simplified
view that does not take into account various options like `--wrap` or
`--dyanimic-list` and always assumes we are creating a shared object.
The actual target may be an executable, but semantically it is used as a
shared object because certain objects need to be visible outside of the
executable when they are read by the OpenMP plugin.
Depends on D117246
Differential Revision: https://reviews.llvm.org/D118155
This patch adds support for linking AMDGPU images using the LLD binary.
AMDGPU files are always bitcode images and will always use the LTO
backend. Additionally we now pass the default architecture found with
the `amdgpu-arch` tool to the argument list.
Depends on D117156
Differential Revision: https://reviews.llvm.org/D117246
This patch adds support for a few extra flags in the linker wrapper,
such as debugging flags, verbose output, and passing arguments to ptxas. We also
now forward pass remarks to the LLVM backend so they will show up in the LTO
passes.
Depends on D117049
Differential Revision: https://reviews.llvm.org/D117156
Summary;
This patch adds support for embedding device images in the linker
wrapper tool. This will be used for performing JIT functionality in the
future.
Depends on D117048
Differential Revision: https://reviews.llvm.org/D117049
Summary:
This patch adds support for linking the OpenMP device bitcode library
late when doing LTO. This simply passes it in as an additional device
file when doing the final device linking phase with LTO. This has the
advantage that we don't link it multiple times, and the device
references do not get inlined and prevent us from doing needed OpenMP
optimizations when we have visiblity of the whole module.
Fix some failings where the implicit conversion of an Error to an
Expected triggered the deleted copy constructor.
Depends on D116675
Differential revision: https://reviews.llvm.org/D117048
This patch implements the fist support for handling LTO in the
offloading pipeline. The flag `-foffload-lto` is used to control if
bitcode is embedded into the device. If bitcode is found in the device,
the extracted files will be sent to the LTO pipeline to be linked and
sent to the backend. This implementation does not separately link the
device bitcode libraries yet.
Depends on D116675
Differential Revision: https://reviews.llvm.org/D116975
This patch adds support for searching through the linker library paths
to identify static libraries that may contain device code. If device
code is present it will be extracted. This should ideally fully support
static linking with OpenMP offloading.
Depends on D116627
Differential Revision: https://reviews.llvm.org/D116675
This patch adds the initial support for linking NVPTX offloading code
using the clang-linker-wrapper tool. This uses the extracted device
files and runs `nvlink` on them. Currently this is then passed to the
existing toolchain for creating linkable OpenMP offloading programs
using `clang-offload-wrapper` and compiling it manually using `llc`.
More work is required to support LTO, Bitcode linking, AMDGPU, and x86
offloading.
Depends on D116545
Differential Revision: https://reviews.llvm.org/D116627
This patchs add support for extracting device offloading code from the
linker's input files. If the file contains a section with the name
`.llvm.offloading.<triple>.<arch>` it will be extracted to a new
temporary file to be linked. Addtionally, the host file containing it
will have the section stripped so it does not remain in the executable
once linked.
Depends on D116544
Differential Revision: https://reviews.llvm.org/D116545
This patch introduces a linker wrapper tool that allows us to preprocess
files before they are sent to the linker. This adds a dummy action and
job to the driver stage that builds the linker command as usual and then
replaces the command line with the wrapper tool.
Depends on D116543
Reviewed By: JonChesterfield
Differential Revision: https://reviews.llvm.org/D116544
The Clang frontend sometimes fails on the following assertion when launched with `-serialize-diagnostic-file <x>`:
```
Assertion failed: (BlockScope.empty() && CurAbbrevs.empty() && "Block imbalance"), function ~BitstreamWriter, file BitstreamWriter.h, line 125.
```
This was first noticed when passing an unknown command-line argument to `-cc1`.
It turns out the `DiagnosticConsumer::finish()` function should be called as soon as processing of all source files ends, but there are some code paths where that doesn't happen:
1. when command line parsing fails in `cc1_main()`,
2. when `!Act.PrepareToExecute(*this)` or `!createTarget()` evaluate to `true` in `CompilerInstance::ExecuteAction` and the function returns early.
This patch ensures `finish()` is called in all those code paths.
Reviewed By: Bigcheese
Differential Revision: https://reviews.llvm.org/D118150
Only using that change in StringRef already decreases the number of
preoprocessed lines from 7837621 to 7776151 for LLVMSupport
Perhaps more interestingly, it shows that many files were relying on the
inclusion of StringRef.h to have the declaration from STLExtras.h. This
patch tries hard to patch relevant part of llvm-project impacted by this
hidden dependency removal.
Potential impact:
- "llvm/ADT/StringRef.h" no longer includes <memory>,
"llvm/ADT/Optional.h" nor "llvm/ADT/STLExtras.h"
Related Discourse thread:
https://llvm.discourse.group/t/include-what-you-use-include-cleanup/5831
The cleanup was manual, but assisted by "include-what-you-use". It consists in
1. Removing unused forward declaration. No impact expected.
2. Removing unused headers in .cpp files. No impact expected.
3. Removing unused headers in .h files. This removes implicit dependencies and
is generally considered a good thing, but this may break downstream builds.
I've updated llvm, clang, lld, lldb and mlir deps, and included a list of the
modification in the second part of the commit.
4. Replacing header inclusion by forward declaration. This has the same impact
as 3.
Notable changes:
- llvm/Support/TargetParser.h no longer includes llvm/Support/AArch64TargetParser.h nor llvm/Support/ARMTargetParser.h
- llvm/Support/TypeSize.h no longer includes llvm/Support/WithColor.h
- llvm/Support/YAMLTraits.h no longer includes llvm/Support/Regex.h
- llvm/ADT/SmallVector.h no longer includes llvm/Support/MemAlloc.h nor llvm/Support/ErrorHandling.h
You may need to add some of these headers in your compilation units, if needs be.
As an hint to the impact of the cleanup, running
clang++ -E -Iinclude -I../llvm/include ../llvm/lib/Support/*.cpp -std=c++14 -fno-rtti -fno-exceptions | wc -l
before: 8000919 lines
after: 7917500 lines
Reduced dependencies also helps incremental rebuilds and is more ccache
friendly, something not shown by the above metric :-)
Discourse thread on the topic: https://llvm.discourse.group/t/include-what-you-use-include-cleanup/5831
This patch adds and exception to the nvlink wrapper tool to not pass
empty cubin files to the nvlink job. If an empty file is passed to
nvlink it will cause an error indicating that the file could not be
opened. This would occur if the user tried to link object files that
contained offloading code with a file that didnt. This will act as a
workaround until the new OpenMP offloading driver becomes the default.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D117777
This is the original patch in my GNUInstallDirs series, now last to merge as the final piece!
It arose as a new draft of D28234. I initially did the unorthodox thing of pushing to that when I wasn't the original author, but since I ended up
- Using `GNUInstallDirs`, rather than mimicking it, as the original author was hesitant to do but others requested.
- Converting all the packages, not just LLVM, effecting many more projects than LLVM itself.
I figured it was time to make a new revision.
I have used this patch series (and many back-ports) as the basis of https://github.com/NixOS/nixpkgs/pull/111487 for my distro (NixOS), which was merged last spring (2021). It looked like people were generally on board in D28234, but I make note of this here in case extra motivation is useful.
---
As pointed out in the original issue, a central tension is that LLVM already has some partial support for these sorts of things. Variables like `COMPILER_RT_INSTALL_PATH` have already been dealt with. Variables like `LLVM_LIBDIR_SUFFIX` however, will require further work, so that we may use `CMAKE_INSTALL_LIBDIR`.
These remaining items will be addressed in further patches. What is here is now rote and so we should get it out of the way before dealing more intricately with the remainder.
Reviewed By: #libunwind, #libc, #libc_abi, compnerd
Differential Revision: https://reviews.llvm.org/D99484
This is the original patch in my GNUInstallDirs series, now last to merge as the final piece!
It arose as a new draft of D28234. I initially did the unorthodox thing of pushing to that when I wasn't the original author, but since I ended up
- Using `GNUInstallDirs`, rather than mimicking it, as the original author was hesitant to do but others requested.
- Converting all the packages, not just LLVM, effecting many more projects than LLVM itself.
I figured it was time to make a new revision.
I have used this patch series (and many back-ports) as the basis of https://github.com/NixOS/nixpkgs/pull/111487 for my distro (NixOS), which was merged last spring (2021). It looked like people were generally on board in D28234, but I make note of this here in case extra motivation is useful.
---
As pointed out in the original issue, a central tension is that LLVM already has some partial support for these sorts of things. Variables like `COMPILER_RT_INSTALL_PATH` have already been dealt with. Variables like `LLVM_LIBDIR_SUFFIX` however, will require further work, so that we may use `CMAKE_INSTALL_LIBDIR`.
These remaining items will be addressed in further patches. What is here is now rote and so we should get it out of the way before dealing more intricately with the remainder.
Reviewed By: #libunwind, #libc, #libc_abi, compnerd
Differential Revision: https://reviews.llvm.org/D99484
Output generation options (like `-save-temps`) will make the analyzer not executed even `--analyze` option is provided in the driver arguments.
Besides, the original approach of adding `--analyze` option will not work when (more than one) `-fsyntax-only` options are provided in the driver arguments.
This patch fixes these two problems by using the syntax-only adjuster to remove output generation options and manually filter out redundant `-fsyntax-only` options.
In the new implementation, the adjusters added by `ClangTool` will not be removed but used as dependencies for clang-check adjusters for analyzer options.
Reviewed By: sammccall
Differential Revision: https://reviews.llvm.org/D116329
Often we run into situations where we want to ignore
warnings from system headers, but Clang will still
give warnings about the contents of a macro defined
in a system header used in user-code.
Introduce a ShowInSystemMacro option to be able to
specify which warnings we do want to keep raising
warnings for. The current behavior is kept in this patch
(i.e. warnings from system macros are enabled by default).
The decision as to whether this should be an opt-in or opt-out
feature can be made in a separate patch.
To put the feature to test, replace duplicated code for
Wshadow and Wold-style-cast with the SuppressInSystemMacro tag.
Also disable the warning for C++20 designators, fixing #52944.
Differential Revision: https://reviews.llvm.org/D116833
Implementation is based on the "expected type" as used for
designated-initializers in braced init lists. This means it can deduce the type
in some cases where it's not written:
void foo(Widget);
foo({ /*help here*/ });
Only basic constructor calls are in scope of this patch, excluded are:
- aggregate initialization (no help is offered for aggregates)
- initializer_list initialization (no help is offered for these constructors)
Fixes https://github.com/clangd/clangd/issues/306
Differential Revision: https://reviews.llvm.org/D116317
This patch adds the support for `atomic compare` in parser. The support
in Sema and CodeGen will come soon. For now, it simply eimits an error when it
is encountered.
Reviewed By: ABataev
Differential Revision: https://reviews.llvm.org/D115561
This reverts commit cc56c66f27.
Fixed a bad assertion, the target of a UsingShadowDecl must not have
*local* qualifiers, but it can be a typedef whose underlying type is qualified.
Currently there's no way to find the UsingDecl that a typeloc found its
underlying type through. Compare to DeclRefExpr::getFoundDecl().
Design decisions:
- a sugar type, as there are many contexts this type of use may appear in
- UsingType is a leaf like TypedefType, the underlying type has no TypeLoc
- not unified with UnresolvedUsingType: a single name is appealing,
but being sometimes-sugar is often fiddly.
- not unified with TypedefType: the UsingShadowDecl is not a TypedefNameDecl or
even a TypeDecl, and users think of these differently.
- does not cover other rarer aliases like objc @compatibility_alias,
in order to be have a concrete API that's easy to understand.
- implicitly desugared by the hasDeclaration ASTMatcher, to avoid
breaking existing patterns and following the precedent of ElaboratedType.
Scope:
- This does not cover types associated with template names introduced by
using declarations. A future patch should introduce a sugar TemplateName
variant for this. (CTAD deduced types fall under this)
- There are enough AST matchers to fix the in-tree clang-tidy tests and
probably any other matchers, though more may be useful later.
Caveats:
- This changes a fairly common pattern in the AST people may depend on matching.
Previously, typeLoc(loc(recordType())) matched whether a struct was
referred to by its original scope or introduced via using-decl.
Now, the using-decl case is not matched, and needs a separate matcher.
This is similar to the case of typedefs but nevertheless both adds
complexity and breaks existing code.
Differential Revision: https://reviews.llvm.org/D114251
Relevant issue: https://github.com/llvm/llvm-project/issues/52705
When the `DisableFormat` option of `clang-format` is set to `true` and a JSON file is formatted, the ephemeral variable binding that is added to the top-level object is not removed from the formatted file. For example, this JSON:
```
{
"key": "value"
}
```
Is reformatted to:
```
x = {
"key": "value"
}
```
Which is not valid JSON syntax. This fix avoids the addition of this binding when `DisableFormat` is set to `true`, ensuring that it cannot be left behind when formatting is disabled.
Reviewed By: MyDeveloperDay, HazardyKnusperkeks
Differential Revision: https://reviews.llvm.org/D115769Fixes#52705
Just defensive CMake-ing. I pulled this from D115544 and D99484 which
are blocked on some lldb CI failures I don't yet understand. Hoping to land
something smaller in the meantime.
Reviewed By: #libc, ldionne
Differential Revision: https://reviews.llvm.org/D115566
This reverts commit 492de35df4.
I tried to apply John's changes in 8d897ec915 that were expected to
fix his patch but that didn't work unfortunately.
Reverting this again to fix the macOS bots and leave him more time to
investigate the issue.
This reverts commit 797b50d4be.
See the original D99484. @mib who noticed the original problem could not longer
reproduce it, after I tried and also failed. We are threfore hoping it went
away on its own!
Reviewed By: mib
Differential Revision: https://reviews.llvm.org/D115544
This avoids an unnecessary copy required by 'return OS.str()', allowing
instead for NRVO or implicit move. The .str() call (which flushes the
stream) is no longer required since 65b13610a5,
which made raw_string_ostream unbuffered by default.
Differential Revision: https://reviews.llvm.org/D115374
WG14 adopted the _ExtInt feature from Clang for C23, but renamed the
type to be _BitInt. This patch does the vast majority of the work to
rename _ExtInt to _BitInt, which accounts for most of its size. The new
type is exposed in older C modes and all C++ modes as a conforming
extension. However, there are functional changes worth calling out:
* Deprecates _ExtInt with a fix-it to help users migrate to _BitInt.
* Updates the mangling for the type.
* Updates the documentation and adds a release note to warn users what
is going on.
* Adds new diagnostics for use of _BitInt to call out when it's used as
a Clang extension or as a pre-C23 compatibility concern.
* Adds new tests for the new diagnostic behaviors.
I want to call out the ABI break specifically. We do not believe that
this break will cause a significant imposition for early adopters of
the feature, and so this is being done as a full break. If it turns out
there are critical uses where recompilation is not an option for some
reason, we can consider using ABI tags to ease the transition.
This patch changes clang-offload-bundler to use the original file extension for
the device archive member when unbundling archives instead of printing a warning
and defaulting to ".o".
Differential Revision: https://reviews.llvm.org/D114776
Required by https://stackoverflow.com/questions/58073606
As the output argument is stripped out in the clang-check tool, it seems impossible for clang-check users to customize the output file name, even with -extra-args and -extra-arg-before.
This patch adds the -analyzer-output-path argument to allow users to adjust the output name. And if the argument is not set or the analyzer is not enabled, the original strip output adjuster will remove the output arguments.
Differential Revision: https://reviews.llvm.org/D97265
LLVM_LINKER_IS_LLD is now set with LLVM_ENABLE_LLD=ON (or LLVM_USER_LINKER=lld)
even on APPLE, and we pass -Wl,-order_file when LLVM_LINKER_IS_LLD on APPLE
too.
To make this straightforward, change the linker detection logic to go through
the compiler driver on APPLE like on the other platforms.
No intended behavior change if LLVM_ENABLE_LLD isn't set.
Differential Revision: https://reviews.llvm.org/D113021
These were added to prevent functions from being removed by WPO.
But that doesn't make sense, correct WPO will not remove functions we actually use.
I noticed these because compiling cc1_main.cpp was pulling in random LLVM pass headers.
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D112971
This is a new draft of D28234. I previously did the unorthodox thing of
pushing to it when I wasn't the original author, but since this version
- Uses `GNUInstallDirs`, rather than mimics it, as the original author
was hesitant to do but others requested.
- Is much broader, effecting many more projects than LLVM itself.
I figured it was time to make a new revision.
I am using this patch (and many back-ports) as the basis of
https://github.com/NixOS/nixpkgs/pull/111487 for my distro (NixOS). It
looked like people were generally on board in D28234, but I make note of
this here in case extra motivation is useful.
---
As pointed out in the original issue, a central tension is that LLVM
already has some partial support for these sorts of things. For example
`LLVM_LIBDIR_SUFFIX`, or `COMPILER_RT_INSTALL_PATH`. Because it's not
quite clear yet what to do about those, we are holding off on changing
libdirs and `compiler-rt`. for this initial PR.
---
On the advice of @lebedev.ri, I am splitting this up a bit per
subproject, starting with LLVM. To allow it to be more easily reviewed. This and the subsequent patch must be landed together, as this will not build alone. But the rest can be landed on their own.
Reviewed By: compnerd
Differential Revision: https://reviews.llvm.org/D100810
When running git-clang-format in a pre-commit hook it's very useful to be able to tell git-clang-format to only look at the --staged/--cached files and not the working directory.
Note this patch is a rebase/fork from {D41147 } which is a fork of {D15465 }
Reviewed By: MyDeveloperDay, HazardyKnusperkeks, lodato
Differential Revision: https://reviews.llvm.org/D90996
Co-authored-by: Mark Lodato <lodato@google.com>
The `clang-scan-deps` CLI tool invokes the compiler with `-print-resource-dir` in case the `-resource-dir` argument is missing from the compilation command line. This is to enable running the tool on compilation databases that use compiler from a different toolchain than `clang-scan-deps` itself. While this doesn't make sense when scanning modular builds (due to the `-cc1` arguments the tool generates), the tool can can be used to efficiently scan for file dependencies of non-modular builds too.
This patch stops deducing the resource directory by invoking the compiler by default. This mode can still be enabled by invoking `clang-scan-deps` with `--resource-dir-recipe invoke-compiler`. The new default is `--resource-dir-recipe modify-compiler-path` which relies on the resource directory deduction taking place in `Driver::Driver` which is based on the compiler path. This makes the default more aligned with the intended usage of the tool while still allowing it to serve other use-cases.
Note that this functionality was also influenced by D108979, where the dependency scanner stopped going through `ClangTool::run`. The function tried to deduce the resource directory based on the current executable path, which might not be what the users expect when invoked from within a shared library.
Depends on D108979.
Reviewed By: dexonsmith
Differential Revision: https://reviews.llvm.org/D108366
The dependency scanner works with multiple instances of `Compiler{Instance,Invocation}`. From names of the variables/members, their purpose is not obvious.
This patch gives descriptive name to the generated `CompilerInvocation` that can be used to derive the command-line to build a modular dependency.
Depends on D111725.
Reviewed By: dexonsmith
Differential Revision: https://reviews.llvm.org/D111728
Following a change {D111273} to allow git-clang-format to see single lines being removed,
we introduced a regression such that if you are removing a whole file it will
assert in clang-format as its given the -lines=0:0 (lines are 1 based)
Reviewed By: HazardyKnusperkeks
Differential Revision: https://reviews.llvm.org/D112056
[git-clang-format][PR46815] Add diffstat functionality
Adding a --diffstat parameter to git-clang-format that essentially uses git diff --stat, i.e. lists the files needing
formatting. This is useful for CI integration or manual usage where one wants to list the files not properly formatted.
I use it for the Suricata project's github action (CI) integration that verifies proper formatting of a pull request
according to project guidelines where it's very helpful to say which files are not properly formatted. I find the list
of files much more useful than e.g. showing the diff in this case using git-clang-format --diff.
An alternative would be to take an additional parameter to diff, e.g. git-clang-format --diff --stat
The goal is not to provide the whole git diff --stat=... parameter functionality, just plain git diff --stat.
Reviewed By: MyDeveloperDay, JakeMerdichAMD
Differential Revision: https://reviews.llvm.org/D84375
This is a bug which gets reported from time to time and we've had multiple attempts to fix it, but don't want to fix it by adding frontEnd to the mix.
This patch aim to find a trivial, but not that sophisticated way of emitting the error without the additional impact of adding libFrontEnd to clang-format.
See {D90121} for analysis of why we don't want those previous attempts
Reviewed By: HazardyKnusperkeks
Differential Revision: https://reviews.llvm.org/D111815
Added support of a "--nvlink-path" option in clang-nvlink-wrapper which
takes the path of nvlink binary.
Static Device Library support for OpenMP (D105191) now searches for
nvlink binary and passes its location via this option. In absence
of this option, nvlink binary is searched in locations in PATH.
Differential Revision: https://reviews.llvm.org/D111488
To reduce the number of explicit builds of a single module, we can try to squash multiple occurrences of the module with different command-lines (and context hashes) by removing benign command-line options. The greatest contributors to benign differences between command-lines are the header search paths.
In this patch, the lookup cache in `HeaderSearch` is used to identify paths that were actually used when implicitly building the module during scanning. This information is serialized into the unhashed control block of the implicitly-built PCM. The dependency scanner then loads this and may use it to prune the header search paths before computing the context hash of the module and generating the command-line.
We could also prune the header search paths when serializing `HeaderSearchOptions` into the PCM. That way, we could do it only once instead of every load of the PCM file by dependency scanner. However, that would result in a PCM file whose contents don't produce the same context hash as the original build, which is probably highly surprising.
There is an alternative approach to storing extra information into the PCM: wire up preprocessor callbacks to capture the used header search paths on-the-fly during preprocessing of modularized headers (similar to what we currently do for the main source file and textual headers). Right now, that's not compatible with the fact that we do an actual implicit build producing PCM files during dependency scanning. The second run of dependency scanner loads the PCM from the first run, skipping the preprocessing altogether, which would result in different results between runs. We can revisit this approach when we stop building implicitly during dependency scanning.
Depends on D102923.
Reviewed By: dexonsmith
Differential Revision: https://reviews.llvm.org/D102488
This moves the registry higher in the LLVM library dependency stack.
Every client of the target registry needs to link against MC anyway to
actually use the target, so we might as well move this out of Support.
This allows us to ensure that Support doesn't have includes from MC/*.
Differential Revision: https://reviews.llvm.org/D111454
If we only delete lines that are outer block statements (if, while, etc),
clang-format-diff.py can't format the statements inside the block statements.
An example to repro:
1. Delete the if statment at line 118 in llvm/lib/CodeGen/Analysis.cpp.
2. Run `git diff -U0 --no-color HEAD^ | clang/tools/clang-format/clang-format-diff.py -i -p1`
It fails to format the statement after if.
Differential Revision: https://reviews.llvm.org/D111273