When handling register spill for indirect debug value LiveDebugValues pass doesn't add
DW_OP_deref operator which may in some cases cause debugger to return value address, instead
of value while machine register holding that address is spilled.
Differential revision: https://reviews.llvm.org/D109142
If we encounter a new debug value, describing the same parameter,
we should stop tracking the parameter's Entry Value. At that point,
in some cases, the Transfer which uses the parameter's Entry Value,
is already emitted. Thanks to the RemoveRedundantDebugValues pass,
many problems with incorrect instruction order and number of DBG_VALUEs
are fixed. However, we still cannot rely on the rule that each new
debug value is set by the previous non-debug instruction in Machine
Basic Block.
When new parameter debug value triggers removal of Backup Entry Value
for the same parameter, do the cleanup of Transfers emitted from Backup
Entry Values. Get the Transfer Instruction which created the new debug
value and search for debug values already emitted from the to-be-deleted
Backup Entry Value and attached to the Transfer Instruction. If found,
delete the Transfer and remove "primary" Entry Value Var Loc from
OpenRanges.
This patch fixes PR47628.
Patch by Nikola Tesic.
Differential revision: https://reviews.llvm.org/D106856
InstrRefBasedLDV is marginally slower than VarlocBasedLDV when analysing
optimised code -- however, it's much slower when analysing code compiled
-O0.
To avoid this: don't use instruction referencing for -O0 functions. In the
"pure" case of unoptimised code, this won't really harm the debugging
experience because most variables won't have been promoted off the stack,
so can't go missing. It becomes more complicated when optimised code is
inlined into functions marked optnone; however these are rare, and as -O0
doesn't run many optimisations there should be little damage to the debug
experience as a result.
I've taken the opportunity to refactor testing for instruction-referencing
into a MachineFunction method, which seems the most appropriate place to
put it.
Differential Revision: https://reviews.llvm.org/D108585
This patch makes InstrRefBasedLDV "safe" to work with DBG_VALUE_LISTs. It
doesn't actually interpret them, but it recognises that they specify
variable locations and avoids propagating false locations, which is better
than the current state. Observe the attached tes
* We avoid propagating DBG_VALUE_LISTs into successor blocks, as they're
not "currently" supported,
* We don't propagate other variable locations across DBG_VALUE_LISTs,
because we know that the variable location is terminated by the
DBG_VALUE_LIST.
Differential Revision: https://reviews.llvm.org/D108143
This patch removes an assertion, and adds a regression test showing why the
assertion is broken.
For context, LocIdx is a key/index number for machine locations, so that we
can describe locations as a single integer and ignore whether they're on
the stack, in registers or otherwise. Back when InstrRefBasedLDV was added,
I happened to bake in a "special" zero number for various reasons, which
Vedant identified as undesirable in this review comment:
https://reviews.llvm.org/D83047#inline-765495 . I subsequently removed that
special zero number, but it looks like I didn't delete this assertion at
the time, which assumes that a zero LocIdx is invalid.
The attached test shows that this assertion is reachable on valid code --
on x86 $rsp always gets the LocIdx number zero, and if you transfer a
variable value into it, InstrRefBasedLDV crashes on that assertion. The
code might be a bit wild to be storing variables to $rsp like that, however
we shouldn't crash on it.
Differential Revision: https://reviews.llvm.org/D108134
This reapplies 54a61c94f9, its follow up in 547b712500, which were
reverted 95fe61e639. Original commit message:
VarLoc based LiveDebugValues will abandon variable location propagation if
there are too many blocks and variable assignments in the function. If it
didn't, and we had (say) 1000 blocks and 1000 variables in scope, we'd end
up with 1 million DBG_VALUEs just at the start of blocks.
Instruction-referencing LiveDebugValues should honour this limitation too
(because the same limitation applies to it). Hoist the relevant command
line options into LiveDebugValues.cpp and pass it down into the
implementation classes as an argument to ExtendRanges. I've duplicated all
the run-lines in live-debug-values-cutoffs.mir to have an
instruction-referencing flavour.
Differential Revision: https://reviews.llvm.org/D107823
VarLoc based LiveDebugValues will abandon variable location propagation if
there are too many blocks and variable assignments in the function. If it
didn't, and we had (say) 1000 blocks and 1000 variables in scope, we'd end
up with 1 million DBG_VALUEs just at the start of blocks.
Instruction-referencing LiveDebugValues should honour this limitation too
(because the same limitation applies to it). Hoist the relevant command
line options into LiveDebugValues.cpp and pass it down into the
implementation classes as an argument to ExtendRanges. I've duplicated all
the run-lines in live-debug-values-cutoffs.mir to have an
instruction-referencing flavour.
Differential Revision: https://reviews.llvm.org/D107823
LLVM provides target hooks to recognise stack spill and restore
instructions, such as isLoadFromStackSlot, and it also provides post frame
elimination versions such as isLoadFromStackSlotPostFE. These are supposed
to return the store-source and load-destination registers; unfortunately on
X86, the PostFE recognisers just return "1", apparently to signify "yes
it's a spill/load". This patch alters the hooks to correctly return the
store-source and load-destination registers:
This is really useful for debug-info as we it helps follow variable values
as they move on/off the stack. There should be no codegen changes: the only
other users of these PostFE target hooks are MachineInstr::getRestoreSize
and MachineInstr::getSpillSize, which don't attempt to interpret the
returned register location.
While we're here, delete the (InstrRef) LiveDebugValues heuristic that
tries to find the spill source register by looking for a killed reg -- we
should be able to rely on the target hooks for that. This involves
temporarily turning off a n InstrRef LivedDebugValues test on aarch64
(patch to re-enable it is in D104521).
Differential Revision: https://reviews.llvm.org/D105428
We keep a record of substitutions between debug value numbers post-isel,
however we never actually look them up until the end of compilation. As a
result, there's nothing gained by the collection being a std::map. This
patch downgrades it to being a vector, that's then sorted at the end of
compilation in LiveDebugValues.
Differential Revision: https://reviews.llvm.org/D105029
Added in 47c3fe2a22, we sometimes need to describe a variable value
substitution with a subregister qualifier, to say that "the value is the
lower 32 bits of this 64 bit register def" for example. That then needs
support during LiveDebugValues to interpret the subregister qualifiers,
which is what this patch adds.
Whenever we encounter a DBG_INSTR_REF and find its value by using a
substitution, collect any subregister qualifiers seen. Then, accumulate the
effects of the qualifiers to work out what offset and what size should be
extracted from the defined register. Finally, for the target ValueIDNum,
extract whatever subregister is in the correct position
Currently, describing a subregister field of a larger value that has been
spilt to the stack, is unimplemented.
Differential Revision: https://reviews.llvm.org/D88894
Very late in compilation, backends like X86 will perform optimisations like
this:
$cx = MOV16rm $rax, ...
->
$rcx = MOV64rm $rax, ...
Widening the load from 16 bits to 64 bits. SEeing how the lower 16 bits
remain the same, this doesn't affect execution. However, any debug
instruction reference to the defined operand now refers to a 64 bit value,
nto a 16 bit one, which might be unexpected. Elsewhere in codegen, there's
often this pattern:
CALL64pcrel32 @foo, implicit-def $rax
%0:gr64 = COPY $rax
%1:gr32 = COPY %0.sub_32bit
Where we want to refer to the definition of $eax by the call, but don't
want to refer the copies (they don't define values in the way
LiveDebugValues sees it). To solve this, add a subregister field to the
existing "substitutions" facility, so that we can describe a field within
a larger value definition. I would imagine that this would be used most
often when a value is widened, and we need to refer to the original,
narrower definition.
Differential Revision: https://reviews.llvm.org/D88891
This patch adds support to the instruction-referencing LiveDebugValues
implementation for emitting entry values. The instruction referencing
implementations tracking by value rather than location means that we can
get around two of the issues with VarLocs. DBG_VALUE instructions that
re-assign the same value to a variable are no longer a problem, because we
can "see through" to the value being assigned. We also don't need to do
anything special during the dataflow stages: the "variable value problem"
doesn't need to know whether a value is available most of the time, and the
times it deoes need to know are always when entry values need to be
terminated.
The patch modifies the "TransferTracker" class, adding methods to identify
when a variable ias an entry value candidate, and when a machine value is
an entry value. recoverAsEntryValue tests these two things and emits an
entry-value expression if they're true. It's used when we clobber or
otherwise lose a value and can't find a replacement location for the value
it contained.
Differential Revision: https://reviews.llvm.org/D88406
In various circumstances, when we clobber a register there may be
alternative locations that the value is live in. The classic example would
be a value loaded from the stack, and then clobbered: the value is still
available on the stack. InstrRefBasedLDV was coping with this at block
starts where it's forced to pick a location, however it wasn't searching
for alternative locations when values were clobbered.
This patch notifies the "Transfer Tracker" object when clobbers occur, and
it's able to find alternatives and issue DBG_VALUEs for that location. See:
the added test.
Differential Revision: https://reviews.llvm.org/D88405
This patch reads machine value numbers from DBG_PHI instructions (marking
where SSA PHIs used to be), and matches them up with DBG_INSTR_REF
instructions that refer to them. Essentially they are two separate parts of
a DBG_VALUE: the place to read the value (register and program position),
and where the variable is assigned that value.
Sometimes these DBG_PHIs can be duplicated, usually by tail duplication.
This corresponds to the SSA structure of the program being destroyed, and
the original PHI being split. When this happens: run LLVMs standard
SSAUpdater utility, to work out what values should appear in which blocks.
The majority of this patch is boilerplate to make use of SSAUpdater.
If there are any additional PHIs on the path between multiple DBG_PHIs and
their using DBG_INSTR_REF, their existance is validated, just in case a
value gets clobbered along the way (see dbg-phis-with-loops.mir for
several examples).
Differential Revision: https://reviews.llvm.org/D86814
This patch implements DBG_VALUE_LIST handling to the LiveDebugValues pass. This
is a substantial change, and makes a few fundamental changes to the existing
logic.
We still use the basic model of a VarLocMap that is indexed by a LocIndex, with
a VarLocSet (a CoalescingBitVector underneath) giving us efficient lookups of
existing variable locations for a given location type. The main change is that
the VarLocMap may contain a given VarLoc multiple times (once for each unique
location operand), so that a VarLoc can be looked up from any of the registers
that it uses. This means that each VarLoc has multiple corresponding LocIndexes;
to allow us to iterate through the set of VarLocs (previously we would iterate
through the VarLocSet), we now also maintain a single entry in the VarLocMap
that contains every VarLoc exactly once.
The VarLoc class itself is also changed; this change is much simpler,
refactoring out location-specific members into a MachineLocation class and
adding a vector of these locations.
Differential Revision: https://reviews.llvm.org/D83890
The issue was introduced in commit rG84a1120943a651184bae507fed5d648fee381ae4
and would cause a VarLoc's StackOffset to be compared with its own, instead of
the StackOffset from the other VarLoc. This patch fixes that.
This patch fixes the two LiveDebugValues implementations
(InstrRef/VarLoc)Based to handle cases where the StackOffset contains
both a fixed and scalable component.
This depends on the `TargetRegisterInfo::prependOffsetExpression` being
added in D90020. Feel free to leave comments on that patch if you have them.
Reviewed By: djtodoro, jmorse
Differential Revision: https://reviews.llvm.org/D90046
This migrates all LLVM (except Kaleidoscope and
CodeGen/StackProtector.cpp) DebugLoc::get to DILocation::get.
The CodeGen/StackProtector.cpp usage may have a nullptr Scope
and can trigger an assertion failure, so I don't migrate it.
Reviewed By: #debug-info, dblaikie
Differential Revision: https://reviews.llvm.org/D93087
To accommodate frame layouts that have both fixed and scalable objects
on the stack, describing a stack location or offset using a pointer + uint64_t
is not sufficient. For this reason, we've introduced the StackOffset class,
which models both the fixed- and scalable sized offsets.
The TargetFrameLowering::getFrameIndexReference is made to return a StackOffset,
so that this can be used in other interfaces, such as to eliminate frame indices
in PEI or to emit Debug locations for variables on the stack.
This patch is purely mechanical and doesn't change the behaviour of how
the result of this function is used for fixed-sized offsets. The patch adds
various checks to assert that the offset has no scalable component, as frame
offsets with a scalable component are not yet supported in various places.
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D90018
Basically, this just improves the dump of the Value stored within a location.
If the defining instruction number is zero, it means it is "live-in".
Before the patch:
ESI --> bb 0 inst 0 loc ESI
After:
ESI --> Value{bb: 0, inst: live-in, loc: ESI}
This is an NFC.
Differential Revision: https://reviews.llvm.org/D90309
As reading the source code, I've found some minor nits:
-Use using instead of typedef
-Fix a comment
-Refactor
Differential Revision: https://reviews.llvm.org/D90155
Deciding where to place debugging instructions when normal instructions
sink between blocks is difficult -- see PR44117. Dealing with this with
instruction-referencing variable locations is simple: we just tolerate
DBG_INSTR_REFs referring to values that haven't been computed yet. This
patch adds support into InstrRefBasedLDV to record when a variable value
appears in the middle of a block, and should have a DBG_VALUE added when it
appears (a debug use before def).
While described simply, this relies heavily on the value-propagation
algorithm in InstrRefBasedLDV. The implementation doesn't attempt to verify
the location of a value unless something non-trivial occurs to merge
variable values in vlocJoin. This means that a variable with a value that
has no location can retain it across all control flow (including loops).
It's only when another debug instruction specifies a different variable
value that we have to check, and find there's no location.
This property means that if a machine value is defined in a block dominated
by a DBG_INSTR_REF that refers to it, all the successor blocks can
automatically find a location for that value (if it's not clobbered). Thus
in a sense, InstrRefBasedLDV is already supporting and implementing
use-before-defs. This patch allows us to specify a variable location in the
block where it's defined.
When loading live-in variable locations, TransferTracker currently discards
those where it can't find a location for the variable value. However, we
can tell from the machine value number whether the value is defined in this
block. If it is, add it to a set of use-before-def records. Then, once the
relevant instruction has been processed, emit a DBG_VALUE immediately after
it.
Differential Revision: https://reviews.llvm.org/D85775
Handle DBG_INSTR_REF instructions in LiveDebugValues, to determine and
propagate variable locations. The logic is fairly straight forwards:
Collect a map of debug-instruction-number to the machine value numbers
generated in the first walk through the function. When building the
variable value transfer function and we see a DBG_INSTR_REF, look up the
instruction it refers to, and pick the machine value number it generates,
That's it; the rest of LiveDebugValues continues as normal.
Awkwardly, there are two kinds of instruction numbering happening here: the
offset into the block (which is how machine value numbers are determined),
and the numbers that we label instructions with when generating
DBG_INSTR_REFs.
I've also restructured the TransferTracker redefVar code a little, to
separate some DBG_VALUE specific operations into its own method. The
changes around redefVar should be largely NFC, while allowing
DBG_INSTR_REFs to specify a value number rather than just a location.
Differential Revision: https://reviews.llvm.org/D85771
This patch adjusts _when_ something happens in LiveDebugValues /
InstrRefBasedLDV, to make it more amenable to dealing with DBG_INSTR_REF
instructions. There's no functional change.
In the current InstrRefBasedLDV implementation, we collect the machine
value-number transfer function for blocks at the same time as the
variable-value transfer function. After solving machine value numbers, the
variable-value transfer function is updated so that DBG_VALUEs of live-in
registers have the correct value. The same would need to be done for
DBG_INSTR_REFs, to connect instruction-references with machine value
numbers.
Rather than writing more code for that, this patch separates the two: we
collect the (machine-value-number) transfer function and solve for
machine value numbers, then step through the MachineInstrs again collecting
the variable value transfer function. This simplifies things for the new
few patches.
Differential Revision: https://reviews.llvm.org/D85760
This was landed but reverted in 5b9c2b1bea due to asan picking up a memory
leak. This is fixed in the change to InstrRefBasedImpl.cpp. Original
commit message follows:
[LiveDebugValues][NFC] Add instr-ref tests, adapt old tests
This patch adds a few tests in DebugInfo/MIR/InstrRef/ of interesting
behaviour that the instruction referencing implementation of
LiveDebugValues has. Mostly, these tests exist to ensure that if you
give the "-experimental-debug-variable-locations" command line switch,
the right implementation runs; and to ensure it behaves the same way as
the VarLoc LiveDebugValues implementation.
I've also touched roughly 30 other tests, purely to make the tests less
rigid about what output to accept. DBG_VALUE instructions are usually
printed with a trailing !debug-location indicating its scope:
!debug-location !1234
However InstrRefBasedLDV produces new DebugLoc instances on the fly,
meaning there sometimes isn't a numbered node when they're printed,
making the output:
!debug-location !DILocation(line: 0, blah blah)
Which causes a ton of these tests to fail. This patch removes checks for
that final part of each DBG_VALUE instruction. None of them appear to
be actually checking the scope is correct, just that it's present, so
I don't believe there's any loss in coverage here.
Differential Revision: https://reviews.llvm.org/D83054
This patch adds the -Xclang option
"-fexperimental-debug-variable-locations" and same LLVM CodeGen option,
to pick which variable location tracking solution to use.
Right now all the switch does is pick which LiveDebugValues
implementation to use, the normal VarLoc one or the instruction
referencing one in rGae6f78824031. Over time, the aim is to add fragments
of support in aid of the value-tracking RFC:
http://lists.llvm.org/pipermail/llvm-dev/2020-February/139440.html
also controlled by this command line switch. That will slowly move
variable locations to be defined by an instruction calculating a value,
and a DBG_INSTR_REF instruction referring to that value. Thus, this is
going to grow into a "use the new kind of variable locations" switch,
rather than just "use the new LiveDebugValues implementation".
Differential Revision: https://reviews.llvm.org/D83048
This patch imports the instruction-referencing implementation of
LiveDebugValues proposed here:
http://lists.llvm.org/pipermail/llvm-dev/2020-June/142368.html
The new implementation is unreachable in this patch, it's the next patch
that enables it behind a command line switch. Briefly, rather than
tracking variable locations by just their location as the 'VarLoc'
implementation does, this implementation does it by value:
* Each value defined in a function is numbered, and propagated through
dataflow,
* Each DBG_VALUE reads a machine value number from a machine location,
* Variable _values_ are propagated through dataflow,
* Variable values are translated back into locations, DBG_VALUEs
inserted to specify where those locations are.
The ultimate aim of this is to enable referring to variable values
throughout post-isel code, rather than locations. Those patches will
build on top of this new LiveDebugValues implementation in later patches
-- it can't be done with the VarLoc implementation as we don't have
value information, only locations.
Differential Revision: https://reviews.llvm.org/D83047
This patch renames the current LiveDebugValues class to "VarLocBasedLDV"
and removes the pass-registration code from it. It creates a separate
LiveDebugValues class that deals with pass registration and management,
that calls through to VarLocBasedLDV::ExtendRanges when
runOnMachineFunction is called. This is done through the "LDVImpl"
abstract class, so that a future patch can install the new
instruction-referencing LiveDebugValues implementation and have it
picked at runtime.
No functional change is intended, just shuffling responsibilities.
Differential Revision: https://reviews.llvm.org/D83046
This is a pure file move of LiveDebugValues.cpp ahead of the pass being
refactored, with an experimental new implementation to follow.
The motivation for these changes can be found here:
http://lists.llvm.org/pipermail/llvm-dev/2020-June/142368.html
And the other related changes can be found in the phabricator stack for
this revision:
Differential Revision: https://reviews.llvm.org/D83304